

Course File
On
“Laplace Transforms, Numerical Methods and Complex Variables”
(2022–2023)
(R20)

Submitted by

Mr. A. Sreehari

Assistant Professor

Mr. N. Levi Chellson

Assistant Professor

From Department of Humanities and Sciences (Mathematics)

In the department of


E.C.E

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)

Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

Ph: 08418 200037, 92470 22662, Fax: 08418 200240, www.cmrec.ac.in

Subject: LTNMCV

COURSE FILE

Subject: LAPLACE TRANSFORMS, NUMERICAL METHODS AND COMPLEX VARIABLES

Year: II– B.Tech. II SEM

Branch: ECE

S.NO	CONTENTS
1	Department Vision & Mission
2	List of PEOs , POs
3	Mapping of course outcomes with PO'S
4	Syllabus Copy
5	Individual time table
6	Session plan
7	Detailed lecture plan
8	Session Execution Log
9	Assignment Questions
10	Sample Assignments Scripts
11	Unit wise course material
12	Mid exam Question Papers
13	Sample mid exam scripts
14	Material collected from internet or websites
15	Power Point Presentations (PPTs)
16	Previous question papers
17	References(Text books / websites)

DEPARTMENT VISION & MISSION:

VISION OF THE INSTITUTE:

To be recognized as a premier institution in offering value based and futuristic quality technical education to meet the technological needs of the society.

MISSION OF THE INSTITUTE:

- To impart value based quality technical education through innovative teaching and learning methods.
- To continuously produce employable technical graduates with advanced skills to meet the current and future technological needs of the society.
- To prepare the graduates for higher learning with emphasis on academic and industrial research.

1. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

VISION

To promote excellence in technical education and scientific research in Electronics and Communication engineering for the benefit of society.

MISSION

- To impart excellent technical education with state of art facilities inculcating values and lifelong learning attitude.
- To develop core competence in our students imbibing professional ethics and team spirit.
- To encourage research benefiting society through higher learning.

2. LIST OF PEOs, POs & PSOs

PROGRAMMES EDUCATIONAL OBJECTIVES (PEOs)

- PEO 1: Excel in professional career & higher education in Electronics & Communication Engineering and allied fields through rigorous quality education.
- PEO 2: Exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning.
- PEO 3: Solve real life problems relating to Electronics & Communication Engineering for the benefits of society.

PROGRAM OUTCOMES (POs)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, social, and environmental considerations.
4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs):

1. Ability to apply concepts of Electronics & Communication Engineering to associated research areas of electronics, communication, signal processing, VLSI & Embedded systems.
2. Ability to design, analyze and simulate a variety of Electronics & Communication functional elements using hardware and software tools along with analytic skills.

3. MAPPING OF COs WITH POS AND PSOs:

COURSE OUTCOMES:

CO1	Use the Laplace transforms techniques for solving ODE's.
CO2	Find the root of a given equation. Estimate the value for the given data using Interpolation.
CO3	Find the numerical solutions for given ODE's.
CO4	Analyze the complex function with reference to their analyticity, integration using Cauchy's Integral and Residue theorems.
CO5	Examine the Taylor's and Laurent's series expansions of complex functions.

Course Code.CO No	Course Outcomes (CO's)
At the end of the course student will be able to	
CMA401BS.1	Use the Laplace transforms techniques for solving ODE's
CMA401BS.2	Find the root of a given equation
CMA401BS.3	Estimate the value for the given data using interpolation
CMA401BS.4	Find the numerical solutions for a given ODE's
CMA401BS.5	Analyze the complex function with reference to their analyticity, integration using Cauchy's integral and residue theorem

Course Outcome (CO)-Program Outcome (PO) Matrix:

Course Outcomes (CO's)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CMA401BS.1	3	2	-	-	-	-	-	-	-	-	-	-
CMA401BS.2	3	2	-	-	-	-	-	-	-	-	-	-
CMA401BS.3	3	2	-	-	-	-	-	-	-	-	-	-
CMA401BS.4	3	2	-	-	-	-	-	-	-	-	-	-
CMA401BS.6	3	2	-	-	-	-	-	-	-	-	-	-

Course Outcome (CO)-Program Specific Outcome (PSO) Matrix:

Course Outcomes (CO's)	PSO1	PSO2
CMA401BS.1	3	2
CMA401BS.2	3	2
CMA401BS.3	3	2
CMA401BS.4	3	2
CMA401BS.5	3	2

4. SYLLABUS COPY - (R20):

UNIT - I

Laplace Transforms	14 L
---------------------------	-------------

Laplace Transforms; Laplace Transform of standard functions; first shifting theorem; Laplace transforms of functions when they are multiplied and divided by 't'. Laplace transforms of derivatives and integrals of function; Evaluation of integrals by Laplace transforms; Laplace transforms of Special functions; Laplace transform of periodic functions.

Inverse Laplace transform by different methods, convolution theorem (without Proof), solving ODEs by Laplace Transform method.

UNIT - II

Numerical Methods – I	8 L
------------------------------	------------

Solution of polynomial and transcendental equations – Bisection method, Iteration Method, Newton- Raphson method and Regula-Falsi method.

Finite differences- forward differences- backward differences-central differences-symbolic relations and separation of symbols; Interpolation using Newton's forward and backward difference formulae. Central difference interpolation: Gauss's forward and backward formulae; Lagrange's method of interpolation.

UNIT - III

Numerical Methods – II	5 L
-------------------------------	------------

Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.

Ordinary differential equations: Taylor's series; Picard's method; Euler and modified Euler's methods; Runge-Kutta method of fourth order .

UNIT - IV

Complex Variables (Differentiation)	16 L
--	-------------

Limit, Continuity and Differentiation of Complex functions. Cauchy-Riemann equations (without proof), Milne- Thomson methods, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties.

UNIT - V

Complex Variables (Integration)	15 L
--	-------------

Line integrals, Cauchy's theorem, Cauchy's Integral formula, Liouville's theorem, Maximum-Modulus theorem (All theorems without proof); zeros of analytic functions, singularities, Taylor's series, Laurent's series; Residues, Cauchy Residue theorem (without proof).

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
2. S.S. Sastry, Introductory methods of Numerical analysis, PHI, 4th Edition, 2005.
3. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

REFERENCE BOOKS:

1. M. K. Jain, SRK Iyengar, R.K. Jain, Numerical methods for Scientific and Engineering Computations , New Age International publishers.
2. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

5. INDIVIDUAL TIME TABLE:

SUBJECT:LTNMCV

SECTION:III- C&II-A,C

NAME: Dr.Y.Sunitha Rani

Day & Time	I	II	III	IV	12.40 - 01.20	V	VI	VII
	09.10 – 10.10	10.10- 11.00	11.00 – 11.50	11.50 – 12.40		01.20 – 02.20	02.20 – 03.10	03.10 – 04.00
MON				LTNMCV				
TUE	LTNMCV					LTNMCV		
WED								
THU						LTNMCV		
FRI				LTNMCV				
SAT						LTNMCV		

6. SESSION PLAN/LESSON PLAN:

SUBJECT-LESSON PLAN

Subject code	Name of the subject	Year/Branch	Name of the Faculty
MA301BS	LAPLACE TRANSFORMS, NUMERICAL METHODS AND COMPLEX VARIABLES	II B.TECH II SEM ECE	1) Mr. A. Sreehari 2) Mr. N. Levi Chellson

S.NO	Topic (UGC Autonomous Syllabus)	Sub-Topic	No. of Lectures Required	Suggested Books	Remarks
UNIT – I Laplace Transforms	Laplace Transforms	Basic concepts, Laplace Transforms formulae and Exponential order	L1	T1, R2	
	Laplace Transform of standard functions	Laplace Transform of standard Functions	L2	T1, R2	
	First shifting theorem	First shifting theorem	L3, L4, L5	T1, R2	

	Laplace transforms of functions when they are multiplied by 't'	Laplace transforms of functions when they are multiplied by 't'	L6	T1, R2	
	Laplace transforms of functions when they are divided by 't'	Laplace transforms of functions when they are divided by 't'	L7	T1, R2	
	Laplace transforms of derivatives	Laplace transforms of derivatives	L8	T1, R2	
	Laplace transforms of integrals	Laplace transforms of integrals	L9	T1, R2	
	Evaluation of integrals by Laplace transforms	Evaluation of integrals by Laplace transforms	L10	T1, R2	
	Laplace transforms of Special functions	Laplace transforms of Special functions	L11	T1, R2	
	Laplace transform of periodic functions.	Laplace transform of periodic functions.	L12	T1, R2	
	Inverse Laplace transform by different methods, convolution theorem (without Proof)	Inverse Laplace transform by different methods, convolution theorem (without Proof)	L13	T1, R2	
	Solving ODEs by Laplace Transform method.	Solving ODEs by Laplace Transform method.	L14	T1, R2	

TOTAL NO OF CLASSES 14

UNIT – II Numerical Methods – I	Solution of polynomial and transcendental equations– Bisection method, Iteration Method.	Solution of polynomial and transcendental equations– Bisection method, Iteration Method.	L15,16	T2, R1	
	Newton- Raphson method and Regula-Falsi method.	Newton- Raphson method and Regula-Falsi method.	L17	T2, R1	
	Finite differences- forward differences- backward differences-central differences.	Finite differences- forward differences- backward differences-central differences.	L18	T2, R1	
	Symbolic relations and separation of symbols; Interpolation using Newton's forward and backward difference	Symbolic relations and separation of symbols; Interpolation using Newton's forward and backward difference	L19	T2, R1	

	formulae.	formulae.			
	Central difference interpolation: Gauss's forward and backward formulae.	Central difference interpolation: Gauss's forward and backward formulae.	L20	T2, R1	
	Lagrange's method of interpolation	Lagrange's method of interpolation	L21,22	T2, R1	
	TOTAL NO OF CLASSES 8				
UNIT – III Numerical Methods – II	Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	L23	T2, R1	
	Ordinary differential equations: Taylor's series; Picard's method; Euler and modified Euler's methods;	Ordinary differential equations: Taylor's series; Picard's method; Euler and modified Euler's methods;	L24,25	T2, R1	
	Runge-Kutta method of fourth order.	Runge-Kutta method of fourth order.	L26,27	T2, R1	
	TOTAL NO OF CLASSES 5				
UNIT – IV Complex Variables (Differentiation)	Limit, Continuity and Differentiation of Complex functions.	Limit, Continuity and Differentiation of Complex functions.	L28,29	T1, T3, R2	
	Cauchy-Riemann equations (without proof).	Cauchy-Riemann equations (without proof).	L30	T1, T3, R2	
	Milne- Thomson methods.	Milne- Thomson methods.	L31,32	T1, T3, R2	
	Analytic functions	Analytic functions	L33	T1, T3, R2	
	Harmonic functions	Harmonic functions	L34	T1, T3, R2	
	Finding harmonic conjugate	Finding harmonic conjugate	L35	T1, T3, R2	
	Finding harmonic conjugate	Finding harmonic conjugate	L36	T1, T3, R2	
	Elementary analytic functions	Elementary analytic functions	L37	T1, T3, R2	
	Elementary analytic functions	Elementary analytic functions	L38,39	T1, T3, R2	

	Elementary analytic functions	Elementary analytic functions	L40	T1, T3, R2	
	(exponential, trigonometric, logarithm) and their properties.	(exponential, trigonometric, logarithm) and their properties.	L41	T1, T3, R2	
	(exponential, trigonometric, logarithm) and their properties.	(exponential, trigonometric, logarithm) and their properties.	L42	T1, T3, R2	
	(exponential, trigonometric, logarithm) and their properties.	(exponential, trigonometric, logarithm) and their properties.	L43	T1, T3, R2	
TOTAL NO OF CLASSES 16					
UNIT – V Complex Variables (Integration)	Line integrals	Line integrals	L44	T1, T3, R2	
	Line integrals	Line integrals	L45	T1, T3, R2	
	Cauchy's theorem	Cauchy's theorem	L46	T1, T3, R2	
	Cauchy's Integral formula	Cauchy's Integral formula	L47	T1, T3, R2	
	Liouville's theorem	Liouville's theorem	L48	T1, T3, R2	
	Maximum-Modulus theorem	Maximum-Modulus theorem	L49	T1, T3, R2	
	zeros of analytic functions	zeros of analytic functions	L50	T1, T3, R2	
	singularities	singularities	L51	T1, T3, R2	
	singularities	singularities	L52	T1, T3, R2	
	Taylor's series	Taylor's series	L53	T1, T3, R2	
	Taylor's series	Taylor's series	L54	T1, T3, R2	
	Laurent's series	Laurent's series	L55	T1, T3, R2	
	Laurent's series	Laurent's series	L56	T1, T3, R2	
	Residues	Residues	L57	T1, T3, R2	
	Cauchy Residue theorem (without proof)	Cauchy Residue theorem (without proof)	L58	T1, T3, R2	
TOTAL NO OF CLASSES 15					
TOTAL NO OF CLASSES 58					

7. DETAILED LECTURE PLAN:

S.NO	Topic (UGC Autonomous Syllabus)	Sub-Topic	No. of Lectures Required	Course Outcome	Method of Teaching
UNIT – I Laplace Transforms	Laplace Transforms	Basic concepts, Laplace Transforms formulae and Exponential order	L1	CO 1 CHALK AND TALK	
	Laplace Transform of standard functions	Laplace Transform of standard Functions	L2		
	First shifting theorem	First shifting theorem	L3, L4, L5		
	Laplace transforms of functions when they are multiplied by 't'	Laplace transforms of functions when they are multiplied by 't'	L6		
	Laplace transforms of functions when they are divided by 't'	Laplace transforms of functions when they are divided by 't'	L7		
	Laplace transforms of derivatives	Laplace transforms of derivatives	L8		
	Laplace transforms of integrals	Laplace transforms of integrals	L9		
	Evaluation of integrals by Laplace transforms	Evaluation of integrals by Laplace transforms	L10		
	Laplace transforms of Special functions	Laplace transforms of Special functions	L11		
	Laplace transform of periodic functions.	Laplace transform of periodic functions.	L12		
	Inverse Laplace transform by different methods, convolution theorem (without Proof)	Inverse Laplace transform by different methods, convolution theorem (without Proof)	L13		
	Solving ODEs by Laplace Transform method.	Solving ODEs by Laplace Transform method.	L14		
TOTAL NO OF CLASSES REQUIRED 14					
UNIT – II Numerical Methods – I	Solution of polynomial and transcendental equations– Bisection method, Iteration Method.	Solution of polynomial and transcendental equations– Bisection method, Iteration Method.	L15,16		

	Newton- Raphson method and Regula-Falsi method.	Newton- Raphson method and Regula-Falsi method.	L17	CO 2	CHALK AND TALK
	Finite differences- forward differences- backward differences-central differences.	Finite differences- forward differences- backward differences-central differences.	L18		
	Symbolic relations and separation of symbols; Interpolation using Newton's forward and backward difference formulae.	Symbolic relations and separation of symbols; Interpolation using Newton's forward and backward difference formulae.	L19		
	Central difference interpolation: Gauss's forward and backward formulae.	Central difference interpolation: Gauss's forward and backward formulae.	L20		
	Lagrange's method of interpolation	Lagrange's method of interpolation	L21,22		

TOTAL NO OF CLASSES REQUIRED 8

UNIT – III Numerical Methods – II	Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	L23	CO 3	CHALK AND TALK
	Ordinary differential equations: Taylor's series; Picard's method; Euler and modified Euler's methods;	Ordinary differential equations: Taylor's series; Picard's method; Euler and modified Euler's methods;	L24,25		
	Runge-Kutta method of fourth order.	Runge-Kutta method of fourth order.	L26,27		

TOTAL NO OF CLASSES REQUIRED 5

UNIT – IV Complex Variables (Differentiation)	Limit, Continuity and Differentiation of Complex functions.	Limit, Continuity and Differentiation of Complex functions.	L28,29		
	Cauchy-Riemann equations (without proof).	Cauchy-Riemann equations (without proof).	L30		
	Milne- Thomson methods.	Milne- Thomson methods.	L31,32		
	Analytic functions	Analytic functions	L33		

	Harmonic functions	Harmonic functions	L34	CO 4	CHALK AND TALK
	Finding harmonic conjugate	Finding harmonic conjugate	L35		
	Finding harmonic conjugate	Finding harmonic conjugate	L36		
	Elementary analytic functions	Elementary analytic functions	L37		
	Elementary analytic functions	Elementary analytic functions	L38,39		
	Elementary analytic functions	Elementary analytic functions	L40		
	(exponential, trigonometric, logarithm) and their properties.	(exponential, trigonometric, logarithm) and their properties.	L41		
	(exponential, trigonometric, logarithm) and their properties.	(exponential, trigonometric, logarithm) and their properties.	L42		
	(exponential, trigonometric, logarithm) and their properties.	(exponential, trigonometric, logarithm) and their properties.	L43		
	TOTAL NO OF CLASSES REQUIRED 16				

UNIT – V Complex Variables (Integration)	Line integrals	Line integrals	L44	CO 5	CHALK AND TALK
	Line integrals	Line integrals	L45		
	Cauchy's theorem	Cauchy's theorem	L46		
	Cauchy's Integral formula	Cauchy's Integral formula	L47		
	Liouville's theorem	Liouville's theorem	L48		
	Maximum-Modulus theorem	Maximum-Modulus theorem	L49		
	zeros of analytic functions	zeros of analytic functions	L50		
	singularities	singularities	L51		
	singularities	singularities	L52		
	Taylor's series	Taylor's series	L53		
	Taylor's series	Taylor's series	L54		

	Laurent's series	Laurent's series	L55		
	Laurent's series	Laurent's series	L56		
	Residues	Residues	L57		
	Cauchy Residue theorem (without proof)	Cauchy Residue theorem (without proof)	L58		
TOTAL NO OF CLASSES REQUIRED 15					
TOTAL NO OF CLASSES REQUIRED 58					

8. SESSION EXECUTION LOG:

Sl .no	Syllabus	Scheduled completed date	Completed date	Remarks
1	I-UNIT	7-9-2021	8-10-2021	COMPLETED
2	II-UNIT	20-10-2021	29-10-2021	COMPLETED
3	III-UNIT	30-10-2021	23-11-2021	COMPLETED
4	IV-UNIT	25-11-2021	11-12-2021	COMPLETED
5	V-UNIT	14-12-2021	18-1-2022	COMPLETED

ACADEMIC YEAR 2022-2023

ACADEMIC SCHEDULE FOR Laplace Transforms , Numerical Methods & Complex Variables (II-BTECH I-SEM)

S.No	Day	Date	Topic	Total Classes	Remarks
1	Monday	10-Oct-22	UNIT:1 Laplace Transform of Standard functions	1	
2	Tuesday	11-Oct-22	T&P		

3	Wednesday	12-Oct-22	First Shift Property, Second Shift Property	2	
4	Thursday	13-Oct-22	Change of scale property, Multiplication & Division by t	3	
5	Friday	14-Oct-22	L.T .of Derivatives & Integrals	4	
6	Saturday	15-Oct-22	L.T. of Special Functions	5	
7	Sunday	16-Oct-22	SUNDAY		
8	Monday	17-Oct-22	L.T of Periodic Functions	6	
9	Tuesday	18-Oct-22	T&P		
10	Wednesday	19-Oct-22	Inverse L.T of Standard Functions, First Shift Property, Second Shift Property,Change of scale property	7	
11	Thursday	20-Oct-22	Inverse L.T of Multiplication & Division by t	8	
12	Friday	21-Oct-22	Inverse L.T of Derivatives & Integrals	9	
13	Saturday	22-Oct-22	Convolution Theorem	10	
14	Sunday	23-Oct-22	SUNDAY		
15	Monday	24-Oct-22	DEWALI		
16	Tuesday	25-Oct-22	Integral Equations	11	
17	Wednesday	26-Oct-22	T&P		
18	Thursday	27-Oct-22	Solution of Ordinary D.E's with constant coefficients	12	
19	Friday	28-Oct-22	Solution of Ordinary D.E's with variable coefficients	13	
20	Saturday	29-Oct-22	Initial & Final Value Theorems	14	
21	Sunday	30-Oct-22	SUNDAY		
22	Monday	31-Oct-22	Unit :2 Numerical Methods-I	15	
23	Tuesday	1-Nov-22	T&P		
24	Wednesday	2-Nov-22	Solution of Algebraic & Transcendental Equations, Bisection Method, Regula Falsi Method	16	
25	Thursday	3-Nov-22	Iteration Method , Newton Raphson Method	17	
26	Friday	4-Nov-22	Symbolic operators & Separation of symbols	18	
27	Saturday	5-Nov-22	Finite , Forward ,Backward , Central Differences	19	
28	Sunday	6-Nov-22	SUNDAY		

29	Monday	7-Nov-22	Newton's Forward ,Backward Difference Formulae	20	
30	Tuesday	8-Nov-22	T&P		
31	Wednesday	9-Nov-22	Gauss's Forward ,Backward Difference Formulae	21	
32	Thursday	10-Nov-22	Lagrange's Interpolation Formula	22	
33	Friday	11-Nov-22	Lagrange's Inverse Interpolation Formula	23	
34	Saturday	12-Nov-22	Problems	24	
35	Sunday	13-Nov-22	SUNDAY		
36	Monday	14-Nov-22	Problems	25	
37	Tuesday	15-Nov-22	T&P	26	
38	Wednesday	16-Nov-22	Problems	27	
39	Thursday	17-Nov-22	Problems	28	
40	Friday	18-Nov-22	Problems	29	
41	Saturday	19-Nov-22	Problems	30	
42	Sunday	20-Nov-22	SUNDAY		
43	Monday	21-Nov-22	Problems	31	
44	Tuesday	22-Nov-22	T&P		
45	Wednesday	23-Nov-22	Problems	32	
46	Thursday	24-Nov-22	Problems	33	
47	Friday	25-Nov-22	Problems	34	
48	Saturday	26-Nov-22	Problems	35	
49	Sunday	27-Nov-22	SUNDAY		
50	Monday	28-Nov-22	Unit :3 Numerical Methods-II	36	

51	Tuesday	29-Nov-22	T&P		
52	Wednesday	30-Nov-22	Trapezoidal Rule	37	
53	Thursday	1-Dec-22	Simpson's 1/3 Rule	38	
54	Friday	2-Dec-22	Simpson's 3/8 Rule	39	
55	Saturday	3-Dec-22	Applicatons & Problems	40	
56	Sunday	4-Dec-22	SUNDAY		
57	Monday	5-Dec-22	Mid Exams		
58	Tuesday	6-Dec-22	Mid Exams		
59	Wednesday	7-Dec-22	Mid Exams		
60	Thursday	8-Dec-22	Mid Exams		
61	Friday	9-Dec-22	Mid Exams		
62	Saturday	10-Dec-22	Mid Exams		
63	Sunday	11-Dec-22	SUNDAY		
64	Monday	12-Dec-22	Taylors Series Method for Solving First order ODE	41	
65	Tuesday	13-Dec-22	T&P		
66	Wednesday	14-Dec-22	Taylors Series Method for Solving Simultaneous First order ODE	42	
67	Thursday	15-Dec-22		43	
68	Friday	16-Dec-22	Picard's Method for Solving First order ODE	44	
69	Saturday	17-Dec-22	Picard's Method for Solving Simultaneous First order ODE	45	
70	Sunday	18-Dec-22	SUNDAY		
71	Monday	19-Dec-22	Picard's Method for Solving Higher order ODE	46	
72	Tuesday	20-Dec-22	T&P		
73	Wednesday	21-Dec-22	Euler's Method for Solving ODE	47	
74	Thursday	22-Dec-22	Modified Euler's Method for Solving ODE	48	
75	Friday	23-Dec-22	Problems	49	
76	Saturday	24-Dec-22	R-K Method of 2,3,4 orders for Solving ODE	50	
77	Sunday	25-Dec-	SUNDAY		

		22			
78	Monday	26-Dec-22	Problems	51	
79	Tuesday	27-Dec-22	T&P		
80	Wednesday	28-Dec-22	Problems	52	
81	Thursday	29-Dec-22	UNIT:4 Complex Variables (Differentiation)	53	
82	Friday	30-Dec-22	Limits , Continuity	54	
83	Saturday	31-Dec-22	Differentiation of Complex Functions	55	
84	Sunday	1-Jan-23		SUNDAY	
85	Monday	2-Jan-23	Analyticity of Complex Functions	56	
86	Tuesday	3-Jan-23	T&P		
87	Wednesday	4-Jan-23	C-R Equations	57	
88	Thursday	5-Jan-23	Harmonic Functions & Harmonic Conjugate	58	
89	Friday	6-Jan-23	Milne - Thomson Method	59	
90	Saturday	7-Jan-23	Problems	60	
91	Sunday	8-Jan-23		SUNDAY	
92	Monday	9-Jan-23	Elementary Analytical functions (exponential , trigonometric, logarithm) & their properties	61	
93	Tuesday	10-Jan-23	T&P		
94	Wednesday	11-Jan-23	Problems	62	
95	Thursday	12-Jan-23	Problems	63	
96	Friday	13-Jan-23	Sankrathi		
97	Saturday	14-Jan-23	Sankrathi		
98	Sunday	15-Jan-23		SUNDAY	
99	Monday	16-Jan-23	Unit:5 Complex Variables (Integration)	64	
100	Tuesday	17-Jan-23	T&P		
101	Wednesday	18-Jan-23	Line Integrals	65	
102	Thursday	19-Jan-23	Cauchy's Theorem	66	
103	Friday	20-Jan-23	Cauchy's Integral Formula , Generalized Cauchy's Integral Formula for Derivatives	67	
104	Saturday	21-Jan-23	Liouville's Theorem, Maximum Modulus Theorem	68	

105	Sunday	22-Jan-23	SUNDAY		
106	Monday	23-Jan-23	Taylor's Series , Laurent's Series	69	
107	Tuesday	24-Jan-23	T&P	70	
108	Wednesday	25-Jan-23	Zeros of analytical functions	71	
109	Thursday	26-Jan-23	Singularities & its types, Poles , Residues	72	
110	Friday	27-Jan-23	Cauchy's Residue Theorem	73	
111	Saturday	28-Jan-23	Problems	74	
112	Sunday	29-Jan-23	SUNDAY		
113	Monday	30-Jan-23	Revision	75	
114	Tuesday	31-Jan-23	T&P		
115	Wednesday	1-Feb-23	Revision	76	
116	Thursday	2-Feb-23	Revision	77	
117	Friday	3-Feb-23	Revision	78	
118	Saturday	4-Feb-23	Revision	79	
119	Sunday	5-Feb-23	SUNDAY		
120	Monday	6-Feb-23	Mid Exams		
121	Tuesday	7-Feb-23	Mid Exams		
122	Wednesday	8-Feb-23	Mid Exams		
123	Thursday	9-Feb-23	Mid Exams		
124	Friday	10-Feb-23	Mid Exams		
125	Saturday	11-Feb-23	Mid Exams		
126	Sunday	12-Feb-23	SUNDAY		

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
2. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.
3. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

REFERENCE BOOKS:

1. M. K. Jain, SRK Iyengar, R.K. Jain, Numerical methods for Scientific and Engineering Computations ,

New Age International publishers.

2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons,2006.

9. ASSIGNMENT QUESTIONS

Unit-I

1. Find a) $L\left(\int_0^t te^{-t} \sin 4t dt\right)$ b) $\int_0^{\infty} \frac{\cos at - \cos bt}{t} dt$ c) $L^{-1}\left(\frac{s^2}{s^4 + 4a^4}\right)$

2. Find a) $L(|sint|)$ b) Find $L(f(t))$ if $f(t) = \begin{cases} 1 & \text{if } 0 < t < 2 \\ 2 & \text{if } 2 < t < 4 \\ 0 & \text{if } t > 4 \end{cases}$

c) Find $L(f(t))$ if $f(t) = \begin{cases} \cos\left(t - \frac{\pi}{3}\right) & \text{if } t < \frac{\pi}{3} \\ 0 & \text{if } t > \frac{\pi}{3} \end{cases}$

3. Solve the following differential equations by using laplace transforms

a) $(D^2 + n^2)x = a \sin(nt + \alpha)$ given $x = Dx = 0$ at $t=0$.

b) $y(t) = 1 - e^{-t} + \int_0^t y(t-u) \sin u du$

4a). Find $L\left(e^{-3t} \int_0^t \frac{\sin u}{u} du\right)$

b). Find $L^{-1}\left(\log\left(\frac{s+3}{s+4}\right)\right)$

5a). Solve $y^{11} = t \cos 2t$ given $y(0) = y^{11}(0) = 0$

b) $y(t) = 1 - e^{-t} + \int_0^t y(t-u) \sin u du$

6. $L^{-1}\left(\frac{5s-2}{s^2(s+2)(s+3)}\right)$

7. using convolution find $L^{-1}\left(\frac{1}{s(s^2+1)(s^2+4)(s^2+16)}\right)$

8. Evaluate $L\{e^t (\cos 2t + (1/2)\sinh 2t)\}$ (2005 sep)

9 .Find the Laplace transform of $e^{-3t} (2\cos 5t - 3\sin 5t)$.(sep 2007)

10. Find the Laplace transform of $e^{-t} (3\sin 2t - 5\cosh 2t)$.(sep 2003)

11. Find the Laplace transform of $e^{-at} \sinh bt$.(2003 sep)

12. Using the theorem on transformation of derivatives, find the Laplace transform of e^{at} . (2000)

13. Laplace transform of integral. (2003 sep)

14. Find $L^{-1}\{s/(s^2-a^2)\}$. (may 2006)

15. Find inverse laplace transform of $(s^2+s-2)/s(s+3)(s-2)$. (2005 sep)

16. Find inverse Laplace transform of $(s+2)/(s^2-2s+5)$. (2003 sep)

17. Find inverse Laplace transform of $(3s-14)/(s^2-4s+8)$. (may 2003).

Unit-II

1. Find the root of the equation $x \log x = 1.2$ using false position method.

2. Find the root of the equation $x^3 - x - 3 = 0$

3. By the method of least squares find the straight line that best fits the following data

x	1	2	3	4	5
y	14	27	40	55	68

4. Fit a parabola to the following data using the method of least squares.

x	1	3	7	9	11	13
y	3.49	8.69	19.09	24.29	29.49	34.69

5. Fit a polynomial of second degree to the data points (2, 3.07), (4, 12.85), (6, 31.47), (8, 57.38) and (10, 91.29).

6. Fit the curve $y = ae^{bx}$ to the following data.

x	0	0.5	1.0	1.5	2.0	2.5
y	0.10	0.45	2.15	9.15	40.35	180.75

7. Using Newton-Raphson method find square root of 24

8. Derive normal equations of a parabola by method of least squares

Unit-III

1. Dividing the range into 10 equal parts, find the value of $\int_0^{\frac{\pi}{2}} \sin x \, dx$, using i) Trapezoidal rule

ii) Simpson's $\frac{1}{3}$ rd rule. iii) Simpson's $\frac{3}{8}$ th rule

2. Use R-K method to evaluate $y(0.1)$ and $y(0.2)$ given that $y' = x + y$, $y(0) = 1$.

3. Use Taylors series method to find the approximate value of y when x=0.1 given that y(0)=1 , $y'=3x+y^2$.

4. Find y(0.1)&y(0.2) using Euler's modified form given that $y'=x^2-y$, $y(0)=1$.

Unit-IV

1. Define derivative of a complex function and find derivative of $f(z) = z^n$ where n is +ve integer.

2. If $u = e^x(x\cos y - y\sin y)$ then find analytic function of f(z).

3. Show that $u = \frac{x}{x^2+y^2}$ is harmonic.

4. State and prove Cauchy-Riemann equations in polar form.

5. Show that $f(z) = z + \bar{z}$ is not analytic any where in the complex plane.

6. Define analytic function and entire function.

7. Find whether $f(z) = \frac{x-iy}{x^2+y^2}$ is not analytic or not.

8. Find all values of "k" such that $f(z) = e^x(x\cos ky + i y\sin ky)$ is analytic.

9. Prove that z^n (n is a +ve integer) is analytic and hence find its derivative.

10. Find analytic function whose real part is $\frac{x}{x^2+y^2}$.

11. Prove that the function of $f(z)$ defined by $f(z) = \begin{cases} \frac{x^3(1+x)-y^3(1-i)}{x^2+y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$

is continuous and C-R equations at the origin ,yet $f'(0)$ does not exist.

12. If $f(z)$ is an analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)|f(z)|^2 = 4|f'(z)|^2$.

13 . Determine "p" so that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + \tan^{-1}\left(\frac{px}{y}\right)$ is analytic.

14. Find the analytic function $f(z) = u + iv$ if $u - v = e^x(\cos y - \sin y)$.

15. Determine the analytic function whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2 = 1$. Also find the harmonic conjugate of this real part.

16. Discuss the continuity of $f(x, y) = \begin{cases} \frac{2xy(x+y)}{x^2+y^2}, & (x, y) \neq (0,0) \\ 0, & (x, y) = (0,0) \end{cases}$

17. Construct the analytic function $f(z)$, whose real part is $e^x \cos y$.

18. If $u(x, y)$ and $v(x, y)$ are harmonic functions in a region R, prove that the function $\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ is an analytic function.

19. Prove that $f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, & z \neq 0 \\ 0, & z = 0 \end{cases}$, $z \neq 0$ is not analytic at $z = 0$ although C-R equations are satisfied at origin.

20. Prove that $f(z) = \sqrt{|xy|}$ is not analytic at $z = 0$ although C-R equations are satisfied at origin.

21. State and prove Cauchy-Riemann equations in Cartesian coordinates.

Unit-V

1. Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$.

2. Find Residue of $f(z) = \frac{z}{z^2+1}$ at its poles.

3. Find Residues of $f(z) = \frac{1}{(z+1)(z+2)}$ at its poles.

4. Expand $f(z) = \tan z$ in Taylor's series about $z = 0$.

5. Expand $f(z) = \frac{z+3}{z(z^2-z-2)}$ for $|z| > 2$.

6. Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x^2$.

7. Define following (i) Singular point (ii) isolated Singular point (iii) Essential Singularity

(iv) Removable Singularity (v) pole of analytic function

8. Evaluate $\int_C \frac{z^3 - \sin 3z}{(z - \frac{\pi}{2})^3} dz$, where C is the circle $|z| = 2$ using Cauchy's integral formula.

9. Evaluate $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle $|z| = 3$ using Cauchy's integral formula.

10. Evaluate $\int_{1-i}^{2+i} (2x + 1 + iy) dz$ along the path $(1 - i)$ to $(2 + i)$.

11. Obtain the expansion for $\sin \left[\frac{1}{z-1} \right]$ which is valid in $1 < |z| < \infty$

12. Evaluate $\int_C \frac{(2z+1)^2}{z^8(4z^3+z)} dz$ over a unit circle C .

13. Evaluate $\int_C (x - 2y) dx + (y^2 - x^2) dy$ where C is the boundary of the first quadrant of the circle $x^2 + y^2 = 4$

14. Using Cauchy integral formula, find $\int_C \frac{e^{2z}}{(z+1)^3} dz$, where C is the curve $|z| = 2$.

15. Evaluate $\int_C (x^2 - iy^2) dz$ along a straight line from $(0,0)$ to $(0,1)$ and then from $(0,1)$ to $(2,1)$.

16. Find Laurent's series of $\frac{z}{(z-1)(z-2)}$ about: a) $|z| < 1$ b) $|z| > 1$ c) $1 < |z| < 2$

17. Evaluate $\int_C \frac{1}{z^8(z+4)} dz$, where C is the circle $|z| = 2$

18. Evaluate $\int_C \frac{z+4}{z^2+2z+5} dz$ where C is the circle (i) $|z + 1 - i| = 2$ (ii) $|z + 1 + i| = 2$

19. If C is the boundary of the square with vertices at the points $z=0, z=1, z=1+i, z=i$ show that $\int_C (3z + 1) dz = 0$.

20. Represent the function $f(z) = \frac{1}{z(z+2)^3(z+1)^2}$ in Laurent series within $\frac{5}{4} \leq |z| \leq \frac{7}{4}$

21. Evaluate $\int_C \frac{dz}{z \sin z}$ where C is the unit circle with centre at the origin.

CMR ENGINEERING COLLEGE

(Approved by AICTE, Affiliated to JNTU, Hyderabad)
KANDLA KOYA (V), MEDCHAL ROAD, HYDERABAD-501401.
Ph: 08418 200037, 92470 22662, Fax: 08418 200240, www.cmrec.ac.in

Department of Electronics and Communication Engineering

MID-I ASSIGNMENT QUESTIONS

1. Find a) $L(\int_0^t te^{-t} \sin 4t dt)$ b) $\int_0^{\infty} \frac{\cos at - \cos bt}{t} dt$ c) $L^{-1}\left(\frac{s^2}{s^4 + 4a^4}\right)$

2. Find a) $L(|sint|)$ b) Find $L(f(t))$ if $f(t) = \begin{cases} 1 & \text{if } 0 < t < 2 \\ 2 & \text{if } 2 < t < 4 \\ 0 & \text{if } t > 4 \end{cases}$

c) Find $L(f(t))$ if $f(t) = \begin{cases} \cos\left(t - \frac{\pi}{3}\right) & \text{if } t < \frac{\pi}{3} \\ 0 & \text{if } t > \frac{\pi}{3} \end{cases}$

3. Solve the following differential equations by using laplace transforms

a) $(D^2 + n^2)x = a \sin(nt + \alpha)$ given $x=Dx=0$ at $t=0$.

b) $y(t) = 1 - e^{-t} + \int_0^t y(t-u) \sin u du$

4. Find the root of the equation $x \log x = 1.2$ using false position method.

5. Find the root of the equation $x^3 - x - 3 = 0$

6. Dividing the range into 10 equal parts, find the value of $\int_0^{\frac{\pi}{2}} \sin x dx$, using i) Trapezoidal rule

ii) Simpson's $\frac{1}{3}$ rd rule. iii) Simpson's $\frac{3}{8}$ th rule

MID-II ASSIGNMENT QUESTIONS

1. Use R-K method to evaluate $y(0.1)$ and $y(0.2)$ given that $y' = x + y$, $y(0) = 1$.
2. Use Taylors series method to find the approximate value of y when $x=0.1$ given that $y(0)=1$, $y'=3x+y^2$.
3. Define derivative of a complex function and find derivative of $f(z) = z^n$ where n is +ve integer.
4. If $u = e^x(x\cos y - y\sin y)$ then find analytic function of $f(z)$.
5. Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$.
6. Find Residue of $f(z) = \frac{z}{z^2+1}$ at its poles.

10. SAMPLE ASSIGNMENT SCRIPTS:

LTNMCV Sample Assignment Scripts.rar

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

Department of Electronics and Communication Engineering

LTNMCV COURSE OUTCOMES (R20)

CO1	Use the Laplace transforms techniques for solving ODE's.
CO2	Find the root of a given equation. Estimate the value for the given data using Interpolation.

CO3	Find the numerical solutions for given ODE's.
CO4	Analyze the complex function with reference to their analyticity, integration using Cauchy's Integral and Residue theorems.
CO5	Examine the Taylor's and Laurent's series expansions of complex functions.

MID-I ASSIGNMENT QUESTIONS

Part - A

1. Find $L\left[\frac{\cos 2t - \cos 3t}{t}\right]$. (CO 1)
2. Find $L^{-1}\left[\frac{2s+1}{s^2+4s+13}\right]$. (CO 1)
3. Find the root of the equation $x \log_{10} x = 1.2$ using False position method. (CO 2)
4. Evaluate $\sqrt[3]{24}$ correct to four decimal places using Newton - Raphson method. (CO 2)
5. From the following table, find the area bounded by the curve and the x-axis from $x = 2$ to $x = 7$ using Trapezoidal rule. (CO 3)

x:	2	3	4	5	6	7
f(x):	8	27	64	125	216	343

Part - B

6. Using Convolution theorem, find $L^{-1}\left[\frac{s}{(s^2+2^2)^2}\right]$. (CO 1)
7. Solve the differential equation using Laplace transforms $(D^2+3D+2)x = e^{-t}$, $x(0) = 0$, $x'(0) = 1$. (CO 1)
8. Find $f(22)$ from the following table using Gauss's forward formula: (CO 2)

x:	20	25	30	35	40	45
f(x):	354	332	291	260	231	204

9. Given the values

x:	5	7	11	13	17
y = f(x):	150	392	1452	2366	5202

Evaluate $f(9)$ using Lagrange's formula. (CO 2)

10. A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given as follows:

t(s)	0	10	20	30	40	50	60	70	80
a(m/s ²)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

Using Simpson's $\frac{1}{3}$ rd rule, find the velocity and position of the rocket at $t = 80$ seconds. (CO 3)

11. Find the volume of a solid of revolution formed by rotating about the x-axis, the area bounded by the lines $x = 0$,

$x = 1.5$, $y = 0$ and the curve passing through the following points using Simpson's $\frac{3}{8}$ th rule. (CO 3)

x:	0.00	0.25	0.50	0.75	1.00	1.25	1.50
y:	1.00	0.9826	0.9589	0.9089	0.8415	0.7624	0.7589

MID-I ASSIGNMENT QUESTIONS

Part - A

1. Find $L \left[\frac{\cos 2t - \cos 3t}{t} \right]$. (BL - 1) (CO 1)

2. Find $L^{-1} \left[\frac{2s+1}{s^2+4s+13} \right]$. (BL - 1) (CO 1)

3. Find the root of the equation $x \log_{10} x = 1.2$ using False position method. (BL - 1) (CO 2)

4. Evaluate $\sqrt[3]{24}$ correct to four decimal places using Newton Raphson Method. (BL - 5) (CO 2)

5. From the following table, find the area bounded by the curve and the x-axis from $x = 2$ to $x = 7$ using

Trapezoidal rule. (BL - 1) (CO 3)

x:	2	3	4	5	6	7
f(x):	8	27	64	125	216	343

Part - B

6. Using Convolution theorem, find $L^{-1} \left[\frac{s}{(s^2+2^2)^2} \right]$. (BL - 1) (CO 1)

7. Solve the differential equation using Laplace transforms $(D^2+3D+2)x = e^{-t}$, $x(0) = 0$, $x'(0) = 1$. (BL - 3) (CO 1)

8. Find $f(22)$ from the following table using Gauss's forward formula: (BL - 1) (CO 2)

x:	20	25	30	35	40	45
f(x):	354	332	291	260	231	204

9. Evaluate $f(9)$ using Lagrange's formula: (BL - 5) (CO 2)

x:	5	7	11	13	17
y = f(x):	150	392	1452	2366	5202

10. Use Simpson's $\frac{1}{3}$ rd rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates. (BL - 1) (CO 3)

11. Use Simpson's $\frac{3}{8}$ th rule evaluate $\int_0^1 \frac{\sin x}{x} dx$, taking $h = \frac{1}{6}$. (BL - 5) (CO 3)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

Department of Electronics and Communication Engineering

LTNMCV COURSE OUTCOMES (R20)

CO1	Use the Laplace transforms techniques for solving ODE's.
CO2	Find the root of a given equation. Estimate the value for the given data using Interpolation.
CO3	Find the numerical solutions for given ODE's.
CO4	Analyze the complex function with reference to their analyticity, integration using Cauchy's Integral and Residue theorems.
CO5	Examine the Taylor's and Laurent's series expansions of complex functions.

MID-II ASSIGNMENT QUESTIONS

Part - A

- Given $y' = x^2 - y$, $y(0) = 1$, find correct to four decimal places the value of $y(0.1)$ using Euler's Method. (CO 3)
- Determine p such that the function $f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(\frac{px}{y})$ to be an analytic function. (CO 4)

3. Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ (CO 4)

4. Find the poles of $f(z) = \cot z$. (CO 5)

5. Find the residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = \infty$. (CO 5)

Part - B

6. Solve $y' = x + y$, given $y(0) = 1$. Find $y(0.1)$, $y(0.2)$ by Picard's Method. (CO 3)

7. Use Runge - Kutta Method of order four to find y when $x = 0.6$ given that $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$. (CO 3)

8. Show that the function $u(x,y) = e^x \cos y$ is harmonic. Determine its harmonic conjugate $v(x,y)$ and the analytic function $f(z) = u + iv$. (CO 4)

9. Find the analytic function $f(z) = u + iv$, where $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$. (CO 4)

10. Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if C is the square with vertices at $1 \pm i$, $-1 \pm i$. (CO 5)

11. Find the Laurent's expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ valid in $1 < |z+1| < 3$. (CO 5)

MID-II ASSIGNMENT QUESTIONS

Part - A

1. Given $y' = x^2 - y$, $y(0) = 1$, find correct to four decimal places the value of $y(0.1)$ using Euler's Method. (BL - 1) (CO 3)

2. Determine p such that the function $f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(\frac{px}{y})$ to be an analytic function. (BL - 5) (CO 4)

3. Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ (BL - 2) (CO 4)

4. Find the poles of $f(z) = \cot z$. (BL - 1) (CO 5)

5. Find the residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = \infty$. (BL - 1) (CO 5)

Part - B

6. Solve $y' = x + y$, given $y(0) = 1$. Find $y(0.1)$, $y(0.2)$ by Picard's Method. (BL - 3) (CO 3)

7. Use Runge - Kutta Method of order four to find y when $x = 0.6$ given that $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$. (BL - 1) (CO 3)

8. Show that the function $u(x,y) = e^x \cos y$ is harmonic. Determine its harmonic conjugate $v(x,y)$ and the analytic function $f(z) = u + iv$. (BL - 2) (CO 4)

9. Find the analytic function $f(z) = u + iv$, where $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$. (BL - 1) (CO 4)

10. Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if C is the square with vertices at $1 \pm i$, $-1 \pm i$.

(BL - 5) (CO 5)

11. Find the Laurent's expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ valid in $1 < |z + 1| < 3$. (BL - 1) (CO 5)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

II. B.Tech - I – SEM

Subject: LTNMCV

Branch: ECE Sections: A,B,C

Tutorial Questions

1. Find $L\left[\frac{\cos 2t - \cos 3t}{t}\right]$. (CO 1)

2. Using Convolution theorem, find $L^{-1}\left[\frac{s}{(s^2+2^2)^2}\right]$. (CO 1)

3. Find the root of the equation $x \log_{10} x = 1.2$ using False position method. (CO 2)

4. Find $f(22)$ from the following table using Gauss's forward formula: (CO 2)

x:	20	25	30	35	40	45
f(x):	354	332	291	260	231	204

5. A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given as follows:

t(s)	0	10	20	30	40	50	60	70	80
a(m/s ²)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

Using Simpson's $\frac{1}{3}$ rd rule, find the velocity and position of the rocket at t = 80 seconds. (CO 3)

6. Use Runge - Kutta Method of order four to find y when x = 0.1 given that $\frac{dy}{dx} = x + y^2$, y(0) = 1. (CO 3)

7. Determine p such that the function $f(z) = x^3 - pxy^2 + i(3x^2y - y^3)$ to be an analytic function. (CO 4)

8. Let u and v denote the real and imaginary components of the function f defined by means of the equations

$f(z) = \begin{cases} \frac{\bar{z}^2}{z}, & \text{when } z \neq 0 \\ 0, & \text{when } z = 0 \end{cases}$. Verify whether Cauchy Reimann equations are satisfied at the origin. (CO 4)

9. Find the poles of $f(z) = \frac{1}{z(e^z - 1)}$. (CO 5)

10. Evaluate the integral $\int_C \frac{dz}{z^3(z+4)}$ taken clockwise around the circle C : |z + 2| = 3. (CO 5)

II. B.Tech - I - SEM

Subject: LTNMCV

Branch: ECE Section: D

Tutorial Questions

1. Find $L^{-1} \left[\frac{2s+1}{s^2+4s+13} \right]$. (CO 1)

2. Solve the differential equation using Laplace transforms $(D^2 + 3D + 2)x = e^{-t}$, $x(0) = 0$, $x'(0) = 1$. (CO 1)

3. Evaluate $\sqrt[3]{24}$ correct to four decimal places using Newton - Raphson method. (CO 2)

4. Given the values

x:	5	7	11	13	17
y = f(x):	150	392	1452	2366	5202

Evaluate f(9) using Lagrange's formula. (CO 2)

5. Find the volume of a solid of revolution formed by rotating about the x-axis, the area bounded by the lines x = 0,

$x = 1.5$, $y = 0$ and the curve passing through the following points using Simpson's $\frac{3}{8}$ th rule. (CO 3)

x:	0.00	0.25	0.50	0.75	1.00	1.25	1.50
y:	1.00	0.9826	0.9589	0.9089	0.8415	0.7624	0.7589

6. Use Runge - Kutta Method of order four to find y when x = 0.2 given that $\frac{dy}{dx} = x + y$, y(0) = 1. (CO 3)

7. Determine p such that the function $f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(\frac{px}{y})$ to be an analytic function. (CO 4)

8. Find the analytic function whose imaginary part is $y^2 - x^2$. (CO 4)

9. Let C denote the positively oriented boundary of the square whose sides lie along the lines x = ± 1 , y = ± 1 .

Evaluate $\int_C \frac{dz}{3z^2+1}$ (CO 5)

10. Find the Laurent Series representation expansion of $\frac{e^z}{(z+1)^2}$ valid in $|z| > 1$. (CO 5)

MID-I TUTORIAL QUESTIONS

Part - A

1. Find $L \left[\frac{\cos 2t - \cos 3t}{t} \right]$. (BL - 1) (CO 1)

2. Find $L^{-1} \left[\frac{2s+1}{s^2+4s+13} \right]$. (BL - 1) (CO 1)

3. Find the root of the equation $x \log_{10} x = 1.2$ using False position method. (BL - 1) (CO 2)

4. Evaluate $\sqrt[3]{24}$ correct to four decimal places using Newton Raphson Method. (BL - 5) (CO 2)

5. From the following table, find the area bounded by the curve and the x-axis from x = 2 to x = 7 using

Trapezoidal rule. (BL - 1) (CO 3)

x:	2	3	4	5	6	7
f(x):	8	27	64	125	216	343

Part - B

6. Using Convolution theorem, find $L^{-1} \left[\frac{s}{(s^2+2^2)^2} \right]$. (BL - 1) (CO 1)

7. Solve the differential equation using Laplace transforms $(D^2 + 3D + 2)x = e^{-t}$, $x(0) = 0$, $x'(0) = 1$. (BL - 3) (CO 1)

8. Find $f(22)$ from the following table using Gauss's forward formula: (BL - 1) (CO 2)

x:	20	25	30	35	40	45
$f(x)$:	354	332	291	260	231	204

9. Evaluate $f(9)$ using Lagrange's formula: (BL - 5) (CO 2)

x:	5	7	11	13	17
$y = f(x)$:	150	392	1452	2366	5202

10. Use Simpson's $\frac{1}{3}$ rd rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates. (BL - 1) (CO 3)

11. Use Simpson's $\frac{3}{8}$ th rule evaluate $\int_0^1 \frac{\sin x}{x} dx$, taking $h = \frac{1}{6}$. (BL - 5) (CO 3)

MID-II TUTORIAL QUESTIONS

Part - A

- Given $y' = x^2 - y$, $y(0) = 1$, find correct to four decimal places the value of $y(0.1)$ using Euler's Method. (BL - 1) (CO 3)
- Determine p such that the function $f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(\frac{px}{y})$ to be an analytic function. (BL - 5) (CO 4)
- Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ (BL - 2) (CO 4)
- Find the poles of $f(z) = \cot z$. (BL - 1) (CO 5)
- Find the residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = \infty$. (BL - 1) (CO 5)

Part - B

- Solve $y' = x + y$, given $y(0) = 1$. Find $y(0.1)$, $y(0.2)$ by Picard's Method. (BL - 3) (CO 3)
- Use Runge - Kutta Method of order four to find y when $x = 0.6$ given that $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$. (BL - 1) (CO 3)
- Show that the function $u(x, y) = e^x \cos y$ is harmonic. Determine its harmonic conjugate $v(x, y)$ and the analytic function $f(z) = u + iv$. (BL - 2) (CO 4)
- Find the analytic function $f(z) = u + iv$, where $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$. (BL - 1) (CO 4)

10. Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if C is the square with vertices at $1 \pm i$, $-1 \pm i$.

(BL - 5) (CO 5)

11. Find the Laurent's expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ valid in $1 < |z + 1| < 3$. (BL - 1) (CO 5)

11. UNIT-WISE COURSE MATERIAL:

LTNMCV Unitwise Course Material.rar

12. MID EXAM QUESTION PAPERS :

LTNMCV Mid Exam qps.rar

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)

Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

II. B.Tech - I - SEM -I MID EXAMINATIONS, Date: 11-11-2021

Time: FN:10.00AM TO 11.30AM

Subject: LTNMCV

Branch: ECE

Marks: 25 M

Note: Question paper contains two parts, Part - A and Part - B.

Part - A is compulsory which carries 10 marks. Answer all questions in Part - A.

Part - B consists of $(2\frac{1}{2})$ units. Answer any one full question from each unit. Each question carries 5 marks and may have a,b,c sub questions.

Part - A

5x2 = 10

1. Find $L\left[\frac{\cos 2t - \cos 3t}{t}\right]$. (CO 1)
2. Find $L^{-1}\left[\frac{2s+1}{s^2+4s+13}\right]$. (CO 1)
3. Find the root of the equation $x \log_{10} x = 1.2$ using False position method. (CO 2)
4. Evaluate $\sqrt[3]{24}$ correct to four decimal places using Newton - Raphson method. (CO 2)

5. From the following table, find the area bounded by the curve and the x-axis from $x = 2$ to $x = 7$ using

Trapezoidal rule. (CO 3)

x:	2	3	4	5	6	7
f(x):	8	27	64	125	216	343

Part - B

3x5 = 15

6. Using Convolution theorem, find $L^{-1}\left[\frac{s}{(s^2+2^2)^2}\right]$. (CO 1)

(OR)

7. Solve the differential equation using Laplace transforms $(D^2+3D+2)x = e^{-t}$, $x(0) = 0$, $x'(0) = 1$. (CO 1)

8. Find $f(22)$ from the following table using Gauss's forward formula: (CO 2)

x:	20	25	30	35	40	45
f(x):	354	332	291	260	231	204

(OR)

9. Given the values

x:	5	7	11	13	17
y = f(x):	150	392	1452	2366	5202

Evaluate $f(9)$ using Lagrange's formula. (CO 2)

10. A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given as

follows:

t(s)	0	10	20	30	40	50	60	70	80
a(m/s ²)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

Using Simpson's $\frac{1}{3}$ rd rule, find the velocity and position of the rocket at $t = 80$ seconds. (CO 3)

(OR)

11. Find the volume of a solid of revolution formed by rotating about the x-axis, the area bounded by the lines $x = 0$,

$x = 1.5$, $y = 0$ and the curve passing through the following points using Simpson's $\frac{3}{8}$ th rule. (CO 3)

x:	0.00	0.25	0.50	0.75	1.00	1.25	1.50
y:	1.00	0.9826	0.9589	0.9089	0.8415	0.7624	0.7589

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

II. B.Tech - I - SEM - II MID EXAMINATIONS Date: 11-1-2022

Time: FN:10.00AM TO 11.30AM

Subject: LTNMCV

Branch: ECE

Marks: 25 M

Note: Question paper contains two parts, Part - A and Part - B.

Part - A is compulsory which carries 10 marks. Answer all questions in Part - A.

Part - B consists of $(2\frac{1}{2})$ units. Answer any one full question from each unit. Each question carries 5 marks and may have a,b,c sub questions.

Part - A

5x2 = 10

1. Given $y' = x^2 - y$, $y(0) = 1$, find correct to four decimal places the value of $y(0.1)$ using Euler's Method. (CO 3)

2. Determine p such that the function $f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(\frac{px}{y})$ to be an analytic function. (CO 4)

3. Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ (CO 4)

4. Find the poles of $f(z) = \cot z$. (CO 5)

5. Find the residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = \infty$. (CO 5)

Part - B

3x5 = 15

6. Solve $y' = x + y$, given $y(0) = 1$. Find $y(0.1)$, $y(0.2)$ by Picard's Method. (CO 3)

(OR)

7. Use Runge - Kutta Method of order four to find y when $x = 0.6$ given that $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$. (CO 3)

8. Show that the function $u(x,y) = e^x \cos y$ is harmonic. Determine its harmonic conjugate $v(x,y)$ and the analytic function $f(z) = u + iv$. (CO 4)

(OR)

9. Find the analytic function $f(z) = u + iv$, where $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$. (CO 4)

10. Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if C is the square with vertices at $1 \pm i$, $-1 \pm i$. (CO 5)

(OR)

11. Find the Laurent's expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ valid in $1 < |z + 1| < 3$. (CO 5)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

II. B.Tech - I - SEM - I MID EXAMINATIONS Date: 08-12-2022

Time: FN: 10.00AM TO 11.30AM

Subject: LTNMCV

Branch: ECE

Marks: 25 M

Note: Question paper contains two parts, Part - A and Part - B.

Part - A is compulsory which carries 10 marks. Answer all questions in Part - A.

Part - B consists of $(2\frac{1}{2})$ units. Answer any one full question from each unit. Each question carries 5 marks and may have a,b,c sub questions.

Part - A

5x2 = 10

1. Find $L \left[\frac{\cos 2t - \cos 3t}{t} \right]$. (BL - 1) (CO 1)

2. Find $L^{-1} \left[\frac{2s+1}{s^2+4s+13} \right]$. (BL - 1) (CO 1)

3. Find the root of the equation $x \log_{10} x = 1.2$ using False position method. (BL - 1) (CO 2)

4. Evaluate $\sqrt[3]{24}$ correct to four decimal places using Newton Raphson Method. (BL - 5) (CO 2)

5. From the following table, find the area bounded by the curve and the x-axis from $x = 2$ to $x = 7$ using

Trapezoidal rule. (BL - 1) (CO 3)

x:	2	3	4	5	6	7
----	---	---	---	---	---	---

f(x):	8	27	64	125	216	343
-------	---	----	----	-----	-----	-----

Part - B

3x5 = 15

6. Using Convolution theorem, find $L^{-1}\left[\frac{s}{(s^2+2^2)^2}\right]$. (BL - 1) (CO 1)

(OR)

7. Solve the differential equation using Laplace transforms $(D^2+3D+2)x = e^{-t}$, $x(0) = 0$, $x'(0) = 1$. (BL - 3) (CO 1)

8. Find $f(22)$ from the following table using Gauss's forward formula: (BL - 1) (CO 2)

x:	20	25	30	35	40	45
f(x):	354	332	291	260	231	204

(OR)

9. Evaluate $f(9)$ using Lagrange's formula: (BL - 5) (CO 2)

x:	5	7	11	13	17
y = f(x):	150	392	1452	2366	5202

10. Use Simpson's $\frac{1}{3}$ rd rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates. (BL - 1) (CO 3)

(OR)

11. Use Simpson's $\frac{3}{8}$ th rule evaluate $\int_0^1 \frac{\sin x}{x} dx$, taking $h = \frac{1}{6}$. (BL - 5) (CO 3)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

SCHEME OF EVALUATION

DESCRIPTIVE TEST - I A.Y: 2022-2023

Branch : ECE

Subject : LTNMCV

Class : II B.Tech

Max marks : 25

Time : 10.00 AM To 11.30 AM.

Note: Question paper contains two parts, Part - A and Part - B.

Part - A is compulsory which carries 10 marks. Answer all questions in Part - A.

Part - A is compulsory which carries 10 marks. Answer all questions in Part - A.

Part - B consists of $(2\frac{1}{2})$ units. Answer any one full question from each unit. Each question carries 5 marks and may have a,b,c sub questions.

S.No.	THEORY	MARKS	TOTAL
1.	Formula	1	2
	Procedure	0.5	

	Final answer	0.5	
2.	Formula	1	2
	Procedure	0.5	
	Final answer	0.5	
3.	False Position Method Formula	1	2
	Procedure	0.5	
	Final answer	0.5	
4.	N-R Method Formula	1	2
	Procedure	0.5	
	Final answer	0.5	
5.	Trapezoidal Rule	1	2
	Procedure	0.5	
	Final answer	0.5	
TOTAL			10
6.	Convolution Formula	2	5
	Procedure	2	
	Final answer	1	
7.	Formula	2	5
	Procedure	2	
	Final answer	1	
8.	Gauss Forward Formula	2	5
	Procedure	2	
	Final answer	1	
9.	Lagrange's Formula	2	5
	Procedure	2	
	Final answer	1	
10.	Simpson's 1/3 rd Rule	2	5
	Procedure	2	
	Final answer with Verification	1	
11.	Simpson's 3/8 th Rule	2	5
	Procedure	2	
	Final answer	1	

TOTAL	15
-------	----

TOTAL	25
-------	----

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

II. B.Tech - I - SEM - II MID EXAMINATIONS **Date: 09-02-2023**

Time: FN: 10.00AM TO 11.30AM

Subject: LTNMCV

Branch: ECE

Marks: 25 M

Note: Question paper contains two parts, Part - A and Part - B.

Part - A is compulsory which carries 10 marks. Answer all questions in Part - A.

Part - B consists of $(2\frac{1}{2})$ units. Answer any one full question from each unit. Each question carries 5 marks and may have a,b,c sub questions.

Part - A

5x2 = 10

1. Given $y' = x^2 - y$, $y(0) = 1$, find correct to four decimal places the value of $y(0.1)$ using Euler's Method. (BL - 1) (CO 3)
2. Determine p such that the function $f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(\frac{px}{y})$ to be an analytic function. (BL - 5) (CO 4)
3. Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ (BL - 2) (CO 4)
4. Find the poles of $f(z) = \cot z$. (BL - 1) (CO 5)
5. Find the residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = \infty$. (BL - 1) (CO 5)

6. Solve $y' = x + y$, given $y(0) = 1$. Find $y(0.1)$, $y(0.2)$ by Picard's Method. (BL - 3) (CO 3)

(OR)

7. Use Runge - Kutta Method of order four to find y when $x = 0.6$ given that $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$. (BL - 1) (CO 3)

8. Show that the function $u(x,y) = e^x \cos y$ is harmonic. Determine its harmonic conjugate $v(x,y)$ and the analytic function $f(z) = u + iv$. (BL - 2) (CO 4)

(OR)

9. Find the analytic function $f(z) = u + iv$, where $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$. (BL - 1) (CO 4)

10. Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if C is the square with vertices at $1 \pm i$, $-1 \pm i$.

(BL - 5) (CO 5)

(OR)

11. Find the Laurent's expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ valid in $1 < |z + 1| < 3$. (BL - 1) (CO 5)

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE - New Delhi. Affiliated to JNTUH and Accredited by NAAC & NBA)
Kandlakoya (V), Medchal (M), Medchal - Malkajgiri (D)-501401

SCHEME OF EVALUATION

DESCRIPTIVE TEST - II

A.Y: 2022-2023

Branch : ECE

Subject : LTNMCV

Class : II B.Tech

Max marks : 25

Time : 10.00 AM TO 11-30 AM.

Note: Question paper contains two parts, Part - A and Part - B.

Part - A is compulsory which carries 10 marks. Answer all questions in Part - A.

Part - B consists of $(2\frac{1}{2})$ units. Answer any one full question from each unit. Each question carries 5 marks and may have a,b,c sub questions.

S.No.	THEORY	MARKS	TOTAL
1.	Euler's Formula	1	2
	Procedure	0.5	

	Final answer	0.5	
2.	Partial derivatives of u and v, C-R equations	1	2
	Procedure	0.5	
	Final answer	0.5	
3.	Partial derivatives	1	2
	Procedure	0.5	
	Final answer	0.5	
4.	Poles Formula	1	2
	Procedure	0.5	
	Final answer	0.5	
5.	Residues Formula	1	2
	Procedure	0.5	
	Final answer	0.5	
TOTAL			10
6.	Picard's Formula	2	5
	Procedure	2	
	Final answer	1	
7.	Rung Kutta Method Formula	2	5
	Procedure	2	
	Final answer	1	
8.	Harmonic Formula	2	5
	Procedure	2	
	Final answer	1	
9.	Milne Thompson Formula	2	5
	Procedure	2	
	Final answer	1	
10.	Cauchy's Theorem Formula, Diagram	2	5
	Procedure	2	
	Final answer with Verification	1	
11.	Partial Fractions	2	5
	Procedure	2	

	Final answer	1	
	TOTAL		15

TOTAL	25
--------------	-----------

13. SAMPLE MID ANSWERS SCRIPTS:

Submitted in Exam Branch

14. MATERIAL COLLECTED FROM INTERNET OR WEBSITES:

1. <https://www.youtube.com/watch?v=EDVJotmT584>
2. <https://www.youtube.com/watch?v=qhUIx096afA>
3. <https://www.youtube.com/watch?v=iviiGB5vxLA>
4. https://www.youtube.com/watch?v=t9xW7UaZwZ0&list=PLU6SqYcYsfI3sh-ho_iiTkCGsTbVh_Sw
5. <https://www.youtube.com/watch?v=ywQVarOaA60>

15. POWER POINT PRESENTATIONS (PPTS):

1. <https://www.myprivatetutor.ae/prime/documents/ppts/details/185/laplace-transform-ppt-presentation>
2. <https://www.slideshare.net/gauravssitu/numerical-method-15623481>
3. https://www.slideshare.net/Mohammed_AQ/numerical-integration-seminar-15
4. <https://www.slideshare.net/PanchalAnand/numerical-solution-of-ordinary-differential-equations-gtu-cvnm-ppt>
5. <https://www.slideshare.net/hishamalmahsery/complex-numbers-and-functions-complex-differentiation>

6. <https://www.slideshare.net/AmitAmola/integration-in-the-complex-plane-52008858>

16. UNIVERSITY QUESTION PAPERS/ QUESTION BANK:

LTNMCV PQP.rar

17. REFERENCES (Text books /Websites or Journals)

TEXT BOOKS:

T1. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.

T2. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.

T3. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

REFERENCE BOOKS:

R1. M. K. Jain, SRK Iyengar, R.K. Jain, Numerical methods for Scientific and Engineering Computations, New Age International publishers.

R2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.