

A

COURSE FILE

ON

“MACHINE LEARNING”

IV B-Tech II Semester (JNTUH-R18)

Department of

COMPUTER SCIENCE & ENGINEERING

CMR ENGINEERING COLLEGE

KANDLAKOYA (V), MEDCHAL (M), R.R.DIST.

CONTENTS OF COURSE FILE:

1. Department vision & mission
2. List of PEOs, POs, PSOs
3. List of Cos (action verbs as per blooms)
4. Syllabus copy and suggested or reference books
5. Session plan/ lesson plan
6. Session execution log
7. Lecture notes
8. Assignment Questions (samples)
9. Mid exam question papers (samples)
10. Scheme of evaluation
11. Mapping of Cos with Pos and PSOs
12. Attainment of Cos, Pos and PSOs (Excel sheet)
13. University question papers or question bank.
14. Power point presentations (PPTs)
15. Websites or URLs e- Resources

Submitted By
M.SWATHI

1. DEPARTMENT VISION & MISSION

Vision:

To produce globally competent and industry ready graduates in Computer Science & Engineering by imparting quality education with a know-how of cutting edge technology and holistic personality.

Mission:

M1. To offer high quality education in Computer Science & Engineering in order to build core competence for the students by laying solid foundation in Applied Mathematics, and program framework with a focus on concept building.

M2. The department promotes excellence in teaching, research, and collaborative activities to prepare students for professional career or higher studies.

M3. Creating intellectual environment for developing logical skills and problem solving strategies, thus to develop, able and proficient computer engineer to compete in the current global scenario.

2. LIST OF PEOs AND POs

2.1 Program Educational Objectives (PEO):

PEO 1: Excel in professional career and higher education by acquiring knowledge of mathematical computing and engineering principles.

PEO 2: To provide an intellectual environment for analyzing and designing computing systems for technical needs.

PEO 3: Exhibit professionalism to adapt current trends using lifelong learning with legal and ethical responsibilities.

PEO 4: To produce responsible graduates with effective communication skills and multidisciplinary practices to serve society and preserve the environment.

2.2 Program Outcomes (PO):

Engineering Graduates will be able to satisfy these NBA graduate attributes:

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

2.3 Program Specific Outcomes (PSOs):

13. PSO1: Professional Skills and Foundations of Software development: Ability to analyze, design and develop applications by adopting the dynamic nature of Software developments.
14. PSO2: Applications of Computing and Research Ability: Ability to use knowledge in cutting edge technologies in identifying research gaps and to render solutions with innovative ideas.

3. COURSE OUTCOMES

- CO1• Ability to understand the basic concept of Machine Learning and its application.
- CO2• Ability to learn the Artificial Neural Networks concepts with various techniques.
- CO3• Ability to analyze and solve problems using Bayesian and other algorithms
- CO4• Ability to understand about Genetic Algorithm, Reinforcement Learning techniques.
- CO5• Ability to apply the various techniques for the analysis and prediction of data using methods.

4. SYLLABUS COPY

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning..

UNIT - II

Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT – III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibbs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, k-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT – IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V

Analytical Learning-1-Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2- Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning– Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

- Machine Learning – **Tom M. Mitchell**, - MGH, **Publisher**: McGraw-Hill Science/Engineering/Math; (March 1, 1997), **ISBN**: 0070428077.

REFERENCES BOOKS:

- Machine Learning: An Algorithmic Perspective, **Stephen Marshland**, Second Edition, 2015 by **Taylor & Francis Group**, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140826 **ISBN-13**: 978-1-4665-8333-7 (eBook - PDF).

5. SESSION PLAN/LESSON PLAN

S.NO	Topic (JNTU syllabus)	Sub-Topic	NO. OF LECTURES REQUIRED	Suggested Books	Methods
1	UNIT – I Introduction , Concept of Learning, Decision Tree Learning	Introduction to Machine Learning Problems, Designing learning System	L1	T1	M1,M2,M4
2		Perspectives and issues in machine learning	L2	T1	M1,M2,M4
3		Introduction to Concept Learning and Specific Ordering	L3	T1	M1,M2,M4
4		Concept Learning Tasks, find-S, hypothesis	L4	T1	M4,M5
5		Concept Learning algorithms, inductive bias concepts	L5	T1	M1,M2,M4
6		Introduction to Decision Tree Learning Concept	L6	T1	M1,M2,M4
7		Representation and Problems of Decision tree learning	L7	T1	M1,M2,M4
8		Hypothesis Space search in Decision Tree Learning Concept	L8	T1	M1,M2,M4
9		Inductive Bias in Decision tree Learning Concept	L9	T1	M1,M2,M4
10		Issues in Decision tree Learning	L10	T1	M1,M2,M4
11	Unit – II Artificial	Introduction to Neural Network-1	L11	T1	M1,M2,M4
12		Appropriate Problems for Neural	L12	T1	M1,M2,M4

	Neural Networks-1, Artificial Neural Networks-2, Evaluation Hypotheses	Networks, perceptions			
13		Concept of Multi Layer Network	L13	T1	M4,M5
14		Concept of Back-propagation Algorithm.	L14	T1	M1,M2,M4
15		Remarks on Back-Propagation algorithm with Examples	L15	T1	M1,M2,M4
16		Concept of Face Recognition and advance topics in Artificial Neural networks	L16	T1	M1,M2,M4
17		Concept of Evaluation hypothesis Accuracy, basic Sampling theory	L17	T1	M1,M2,M4
18		Approach for Confidence intervals Concepts	L18	T1	M1,M2,M4
19		Concept of Error of two hypotheses	L19	T1	M3,M5,M4
20		Concept of Comparing Learning algorithms	L20	T1	M6,M7,M8
21	Unit - III Bayesian Learning, Computational learning theory, Instance-Based Learning	Introduction to Bayes Theorem and Concept Learning	L21	T1	M9,M4
22		Introduction to Maximum Likelihood and least squared error hypotheses.	L22	T1	M2,M4
23		Concept of Maximum likelihood hypotheses for predicting probabilities and minimum description length principle.	L23	T1	M4,M5
24		Introduction of Bayes optimal classifier	L24	T1	M1,M2,M4
25		Gibbs algorithm, Naïve Bayes classifier.	L25,L26	T1	M1,M2,M4
26		Describing with an example: learning to classify text, Bayesian belief networks, the EM algorithm.	L27,L28	T1	M1,M2,M4
27		Introduction and probably learning an approximately correct hypothesis.	L29	T1	M1,M2,M4
28		Sample complexity for finite hypothesis space.	L30	T1	M1,M2,M4
29		Sample complexity for infinite hypothesis spaces, the mistake bound model of learning.	L31	T1	M1,M2,M4
30		Introduction and k-nearest neighbour algorithm.	L32	T1	M1,M2,M4
31		Locally weighted regression, radial basis functions.	L33		M1,M2,M4
32		Case-based reasoning, remarks on lazy and eager learning.	L34		M4,M5
33		Motivation and Genetic algorithms, an illustrative example.	L35,L36	T1	M1,M2,M4
34		Concept of Hypothesis space search, genetic programming.	L37	T1	M1,M2,M4
35		Models of evolution and	L38	T1	M1,M2,M4

36	Unit – IV Genetic Algorithms, Learning Sets of Rules, Reinforcement Learning.	learning. Parallelizing genetic algorithms.	L39	T1	M1,M2,M4
37		Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules.	L40	T1	M1,M2,M4
38		Learning sets of First-Order rules: FOIL, Induction as inverted deduction.	L41	T1	M3,M5,M4
39		Inverting resolution.	L42	T1	M6,M7,M8
40		Introduction, the learning task, Q-learning.	L43	T1	M9.M4
41		Non-deterministic, rewards and actions, temporal difference learning.	L44,L45	T1	M2,M4
42		Generalizing from examples, relationship to dynamic programming.	L46,L47	T1	M1,M2,M4
43		Introduction.	L48	T1	M1,M2,M4
44	Unit – V Analytical Learning-1, Analytical Learning-2, Combining Inductive and Analytical Learning.	Learning with perfect domain theories: PROLOG-EBG.	L49	T1	M3,M5,M4
45		Remarks on explanation-based learning, explanation-based learning of search control knowledge.	L50	T1	M6,M7,M8
46		Using prior knowledge to alter the search objective.	L51	T1	M9.M4
47		Using prior knowledge to augment search operators.	L52	T1	M2,M4
48		Motivation	L53	T1	M6,M7,M8
49		Inductive-analytical approaches to learning.	L54	T1	M9.M4
50		Using prior knowledge to initialize the hypothesis.	L55	T1	M2,M4

METHODS OF TEACHING:

M1 : Lecture Method	M4 : Presentation /PPT	M7 : Assignment
M2 : Demo Method	M5 : Lab/Practical	M8 : Industry Visit
M3 : Guest Lecture	M6 : Tutorial	M9 : Project Based

NOTE:

1. Any Subject in a Semester is suppose to be completed in 50 to 60 periods.
2. Each Period is of 50 minutes.
3. Each unit duration & completion should be mentioned in the Remarks Column.

4. List of Suggested books can be marked with Codes like T1, T2, R1, R2 etc.

INDIVIDUAL TIME TABLE

	I	II	III		IV	V	VI	VII
MON	ML-D							ML-D
TUE						ML-D	ML-D	
WED					ML-D	ML-D	ML-D	
THU								
FRI								
SAT								

6. Session Execution Log:

S no	Units	No. Classes	Remarks
1	I	10	COMPLETED
2	II	10	COMPLETED
3	III	14	COMPLETED
4	IV	13	COMPLETED
5	V	8	COMPLETED

7. Lecture Notes – (hand written)

8. ASSIGNMENT QUESTIONS ALONG SAMPLE ASSIGNMENT SCRIPTS

CMR ENGINEERING COLLEGE

(Accredited by NBA, Approved by AICTE, Affiliated to JNTU, Hyderabad)

KANDLAKOYA (V), MEDCHAL ROAD, HYDERABAD-501401.

Ph: 08418 200037, 92470 22662, Fax: 08418 200240, www.cmrec.org.

Department of Computer Science & Engineering

Year: ECE , IV YEAR II-SEM

Subject: Machine Learning

MID EXAMINATIONS-1

Branch: ECE

MACHINE LEARNING

Assignment Questions

1. What is the difference between Supervised learning and unsupervised learning?
2. What is Well posed learning problem. Discuss any three well posed learning problems describing their task performance and experience?
3. Explain Bayes Theorem with an example?
4. What are the requirements of clustering algorithms
5. Compare Classification with a regression with an example

CMR ENGINEERING COLLEGE
Kandlakoya (V), Medchal Road, Hyderabad – 501401

IV.B.TECH. II SEM MID-2 ASSIGNMENT QUESTIONS SUBJECT: ML

1. With a suitable example discuss a radial basis function network?
2. Describe the representation of hypothesis and genetic algorithms used in this?
3. Explain an algorithm for regression a set of literals through a single horn clause?
4. Define genetic algorithm?
5. Describe k-nearest neighbor algorithm.? Why is it called instance based learning?

9. MID EXAM QUESTION PAPER ALONG SAMPLE ANSWER SCRIPTS

CMR ENGINEERING COLLEGE

(Accredited by NBA, Approved by AICTE, Affiliated to JNTU, Hyderabad)

KANDLAKOYA (V), MEDCHAL ROAD, HYDERABAD-501401.

Ph: 08418 200037, 92470 22662, Fax: 08418 200240, www.cmrec.org.

Department of Computer Science & Engineering

IV.B.TECH II SEM - I MID EXAMINATIONS

Subject: MACHINE LEARNING

BRANCH: CSE

Time: 1hr

Marks: 20X1=20 M

Year: ECE, IV YEAR II-SEM

Subject: Machine Learning

MID EXAMINATIONS-1

Branch: ECE

Part -A
Answer any 2 Questions:

Total = 10 Marks
Marks: 2X5=10M

6. What is the difference between Supervised learning and unsupervised learning? [CO1]
7. What is Well posed learning problem. Discuss any three well posed learning problems describing their task:performance and experience? [CO2]
8. Explain Bayes Theorem with an example? [CO2]
9. What are the requirements of clustering algorithms [CO2]

10. Mid-1 Scheme of evaluation

1	difference between Supervised learning and unsupervised learning	5	5
2	Well posed learning problem	2	5
	three well posed learning problems describing their task	3	
3	Bayes Theorem with an example	5	5
4	requirements of clustering algorithms	5	5

CMR ENGINEERING COLLEGE

(Accredited by NBA, Approved by AICTE, Affiliated to JNTU, Hyderabad)

KANDLAKOYA (V), MEDCHAL ROAD, HYDERABAD-501401.

Ph: 08418 200037, 92470 22662, Fax: 08418 200240, www.cmrec.org.

Department of Computer Science & Engineering

IV.B.TECH II SEM - II MID EXAMINATIONS

Subject: MACHINE LEARNING

BRANCH: CSE

Time: 1hr

Marks: 20X1=20 M

Year: ECE, IV YEAR II-SEM

Subject: Machine Learning

MID EXAMINATIONS-2

Branch: ECE

Part -A
Answer any 2 Questions:

Total = 10 Marks
Marks: 2X5=10M

1. With a suitable example discuss a radial basis function network. [CO3]
2. Describe the representation of hypotheses and genetic algorithms used in this. [CO4]
3. Explain an algorithm for regressing a set of literals through a single horn clause. [CO5]
4. Define genetic algorithm. [CO4]
5. How rules are post-pruned? Explain with an example [CO5]

11. Mapping of Course Objectives, Course Outcomes with PEOs and Pos

	Program Outcome(PO):													
PEOS		1	2	3	4	5	6	7	8	9	10	11	12	
	I	X	X	X	X									
	II	X	X	X	X	X						X		
	III		X	X	X	X								
							X		X					
								X		X				
											X			
Course Outcomes		Relationship of Course outcomes to Program Outcomes (PO AVG)												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	3	3	2	3	-	-	-	3	2	-	-	2	-	2
CO2	2	3	3	3	2	-	-	2	3	-	-	3	1	3
CO3	3	3	3	3	2	1	-	3	2	2	3	2	-	2
CO4	3	2	2	2	3	-	-	2	2	2	1	2	2	3
CO5	3	3	3	3	3	-	-	2	3	1	2	3	2	3

12. ATTAINMENT OF CO's, PO's AND PSO's (EXCEL SHEET):

13. University Question Papers or Question Bank.

Question Model papers-JNTUH ML-2021.zip

14. PPTs AND PRESENTATION

15. Websites or URLs e- Resources

- 1) <https://nptel.ac.in/courses/106/106/106106139/>
- 2) <https://nptel.ac.in/courses/106/105/106105152/>
- 3) <https://aws.amazon.com/training/learn-about/machine-learning/>
- 4) https://www.coursera.org/learn/machine-learning?ranMID=40328&ranEAID=OvHlmBp2G0c&ranSiteID=OvHlmBp2G0cz6ad8GRJACggXck8c1Z.g&siteID=OvHlmBp2G0cz6ad8GRJACggXck8c1Z.g&utm_content=10&utm_medium=partners&utm_source=links_hare&utm_campaign=OvHlmBp2G0c
- 5) https://matlabacademy.mathworks.com/?s_tid=gn_trg_cosp
- 6) https://www.edx.org/course/machine-learning?source=aw&awc=6798_1615460556_1400acc8805550b9f6981da90913e481&utm_source=aw&utm_medium=affiliate_partner&utm_content=text-link&utm_term=315645_LearnDataSci
- 7) <https://www.futurelearn.com/courses/big-data-machine-learning>
- 8) <https://course18.fast.ai/ml>
- 9) <https://www.udacity.com/course/intro-to-machine-learning--ud120>
- 10) <https://ai.google/>
- 11) <https://www.geeksforgeeks.org/how-to-start-learning-machine-learning/#:~:text=Machine%20Learning%20involves%20the%20use,human%20hand%20holding!!!>
- 12) <https://machinelearningmastery.com/start-here/>
- 13) <https://elitedatascience.com/learn-machine-learning>
- 14) https://www.udemy.com/course/machine-learning-and-ai-with-hands-on-projects/?utm_source=adwords&utm_medium=udemysads&utm_campaign=MachineLearning_v.PROF_la.EN_cc.INDIA_t.6594&utm_content=deal4584&utm_term=.ag_81684916782.ad_437560508873.kw.de.c.dm.pl.ti.dsa-774930044809.li_9040231.pd.&matchtype=b&gclid=Cj0KCQiAnKeCBhDPARIaAFDTLTI46ef6uRtJpZ13OeMw9j4LvB4FbrfYoQgztu9wTAOnFMqBC33mpi8aAp3xEALw_wcB