&W{(\ o

ol oo \RIIA " oy
T . 1 L1 el e ‘\i\f;)
CMR CMR ENGINEERING COLLEGE <=
ENGINEERING COLLEGE UGC AUTONOMOUS
EXPLORE TO INVENT Approved by AICTE-New Delhi | Affiliated to JNTUH | Accredited by NAAC & NBA

Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning)

SOFTWARE ENGINEERING LAB
Il. B. Tech Il Semester

N. Swaroopa
Asst. Professor

2024-2025

LEAD EXPERIMENTS

1.To Estimate the effort, development time, and cost of a software project using
the COCOMO model and analyze its applicability in real —world scenarios ?

2. Estimation of effort using FP estimation for online examination system

1.To Estimate the effort, development time, and cost of a software project using

the COCOMO model and analyze its applicability in real ~world scenarios ?

COCOMO Model :

COCOMO (Constructive Cost Model) is an empirical software cost estimation model
developed by Barry Boehm in the 1980s. It helps project managers estimate the effort
(person-months), development time, and cost based on the size of the software
measured in KLOC (thousands of lines of code).

COCOMO Basic Model Formula
The basic COCOMO model is defined as:
o Effort (E) =a x (KLOC)"b
e Development Time (D) = ¢ x (Effort)d
Where:
e 4, b, c,dare constants depending on the project type:
o Organic: Small teams with good experience and stable requirements

o Semi-Detached: Intermediate
o Embedded: Complex, tight constraints

Project Type a b ¢ d
Organic 2.41.052.50.38
Semi-Detached 3.0 1.12 2.5 0.35
Embedded 3.61.202.50.32

Example Estimation Using COCOMO
Assume a project of 50 KLOC, categorized as Semi-Detached.
Step 1: Effort Estimation
e Effort=3.0 x (50)"1.12 = 3.0 x 86.4 = 259.2 person-months
Step 2: Development Time Estimation
e Time=2.5x(259.2)"0.35 = 2.5 x 8.9 = 22.3 months
Step 3: Cost Estimation

If the cost per person-month = 100,000
Total Cost =259.2 x 100,000 =X2.59 Crores

Applicability in Real-World Scenarios
Advantages
o Simple and easy to use for early project estimates.
o Useful in planning budgets, staffing, and schedules.
o Gives a quantitative basis for software effort estimation.

Limitations

o Depends heavily on accurate size estimation (KLOC), which is difficult

early on.

o Not suitable for modern agile or iterative models where requirements
evolve.

e May not handle component reuse, GUI-based systems, or Al-based systems
well.

Real-World Use

o Used in defense, aerospace, and legacy enterprise systems where traditional
waterfall models are still relevant.

e Helps in benchmarking historical project data.

o Often integrated in estimation tools in modified forms (e.g., COCOMO II for
modern development).

2. To Estimation of effort using FP estimation for online examination system?

FP estimation for online examination system

1. Functional Components of the System

The Online Examination System includes features such as:
- Student and Admin login

- Registering students and exams

- Question paper management

- Conducting exams

- Viewing results and reports

These are mapped to the five Function Point (FP) categories:
El - External Inputs

EO - External Outputs

EQ - External Inquiries

ILF - Internal Logical Files

EIF - External Interface Files

2. Function Point Count Table

Function Type | Function Count Complexity Weight Total FP

Description

El Login, 6 Average 4 24
Register,
Create Exam,
Submit
Answers

EO View Results, 3 Average 5 15
Reports

EQ Fetch Student | 3 Simple 3 9
Info, Exam
List, Exam
Details

ILF Students DB, 3 Average 10 30
Questions DB,
Results DB

EIF Authentication | 2 Simple 5 10
System,
University DB

Unadjusted Function Points (UFP) =24+ 15+9 + 30+ 10 = 88

3. Value Adjustment Factor (VAF)

Based on 14 General System Characteristics (GSCs), assume a medium influence score:
Total Degree of Influence (DI) = 35
VAF =0.65 + (0.01 x DI) = 0.65 + 0.35 = 1.00

4. Adjusted Function Points (AFP)
AFP = UFP x VAF = 88 x 1.00 = 88

5. Effort and Cost Estimation

Productivity Rate = 10 hours per FP

Total Effort = 88 x 10 = 880 hours

Person-Months (assuming 160 hours/month) = 880 + 160 = 5.5 PM
Cost per Person-Month = %1,00,000

Estimated Project Cost = 5.5 x X1,00,000 = %5.5 Lakhs

QUL
'S

2

= Q 3 n"f)u\;s-vu:%nom A \I ”m o rerzacron ~=
&3 = i FRAMEWORK ON IXNOYATION ACKIKY
CMR CMR ENGINEERING COLLEGE
ENGINEERING COLLEGE UGC AUTONOMOUS
EXPLORE TO INVENT Approved by AICTE-New Delhi | Affiliated to JNTUH | Accredited by NAAC & NBA

Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning)

Database Management Systems Lab
I1. B. Tech Il Semester

M. Soujanya
Asst. Professor

2024-2025

LEAD EXPERIMENTS

1) Create views to insert, delete and update tuples.

2) Create trigger. the trigger as to execute on inserting a table and create a backup data.

1)Create views to insert, delete and update tuples
Aim: To implement operations on relations using PL/SQL Views.

Definition: A view is, in essence, a virtual table. It does not physically exist. Rather, it is
created by a query joining one or more tables.

Create view employee dept-view as select t1.emp_name,t2.dept_name
From employee as t1 left join department as t2

Insert into employee(‘fname’,’ Iname’,’ssn’,dno)
values(‘robert’,’hitler’,9673553574,2);

Delete from employee

where fname="‘robert’;

Update employee

SET fname="brown’,Iname="rob’,ssn=9680377384,Dno=2;

Result: Views in PL/SQL language are performed.

2). Create trigger. the trigger as to execute on inserting a table and create a backup data
Aim: To implement operations on relations using PL/SQL trigger

Definition: a trigger is a SQL procedure that initiates an action (i.e., fires an action) when an
event (INSERT, DELETE or UPDATE) occurs. Sincetriggers are event-driven specialized
procedures, they are stored in and managed by the DBMS.

CREATE TRIGGER PRINT_SALARY_CHANG IS
BEFORE DELETE OR INSERT OR UPDATE ON emp
FOR EACH ROW

WHEN (new.empno>0)

DECLARE

Sal-diff number

BEGIN

Sal-diff=new Sal-old sal;

Dbms_output.put(“old salary://:old sal”);
Dbms_output.put(‘““new salary://:new sal”);

END;

/

Result: A triggers in PL/SQL language are performed.

@ —— FRAMEWORK ON IXNOVATION ACKIEVAMENTS S
CMR CMR ENGINEERING COLLEGE
ENGINEERING COLLEGE UGC AUTONOMOUS
EXPLORE TO INVENT Approved by AICTE-New Delhi | Affiliated to JNTUH | Accredited by NAAC & NBA

Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning)

Computer Networks Lab
I11. B. Tech Il Semester

D. Siva Raja Kumar
Asst. Professor

2024-2025

LEAD EXPERIMENTS

1) Create views to insert, delete and update tuples.

2) Create trigger. the trigger as to execute on inserting a table and create a backup data.

1) Implement the Stop-and-Wait protocol for data transmission.

Aim: To implement the Stop-and-Wait protocol for reliable data transmission over an unreliable
communication channel.

Program:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> // for sleep()

/l Simulated sender function
void sender(int frames[], int n) {
inti=0, ack;
while (i <n) {
printf("Sender: Sending frame %d\n", framesJi]);

/l Simulate frame transmission delay
sleep(1);

Il Ask if the frame was received
printf("Receiver: Was frame %d received? (1 for Yes, 0 for No): ", frames][i]);
scanf("%d", &ack);

if (ack ==1) {
printf("Sender: Acknowledgment received for frame %d\n\n", frames[i]);
i++; // Go to next frame

}else {

printf("Sender: No ACK received for frame %d. Resending...\n\n", frames[i]);

¥

/I Simulate time delay before next transmission
sleep(1);
}

printf("All frames sent successfully.\n");

¥

int main() {
intn;

printf("Enter the number of frames to send: ");
scanf("%d", &n);

int frames[n];
printf("Enter %d frame data (integers):\n", n);
for (inti=0;i<n; i++) {

printf("Frame %d: ", i);

scanf("%d", &frames[i]);

¥

printf(*\n--- Starting Stop-and-Wait Protocol ---\n\n");
sender(frames, n);
return O;

¥

Result:

Enter the number of frames to send: 3
Enter 3 frame data (integers):

Frame 0: 10

Frame 1: 20

Frame 2: 30

--- Starting Stop-and-Wait Protocol ---

Sender: Sending frame 10
Receiver: Was frame 10 received? (1 for Yes, 0 for No): 1
Sender: Acknowledgment received for frame 10

Sender: Sending frame 20
Receiver: Was frame 20 received? (1 for Yes, 0 for No): 0
Sender: No ACK received for frame 20. Resending...

Sender: Sending frame 20
Receiver: Was frame 20 received? (1 for Yes, 0 for No): 1
Sender: Acknowledgment received for frame 20

2) To study about the working of basic networking commands

Aim: To study the working of basic networking commands (ping, ip, netstat, and traceroute) by
executing them from a C program.

Program:
#include <stdio.h>
#include <stdlib.h>

void show_menu() {
printf("\n--- Basic Networking Commands ---\n");
printf("1. Ping a host\n");
printf("2. Show IP configuration\n");
printf("3. Show network statistics\n");
printf(4. Traceroute to a host\n");
printf("5. Exit\n");
printf("Enter your choice: *);

¥

int main() {
int choice;
char host[100];

while (1) {
show_menu();
scanf("%d", &choice);

switch (choice) {
case 1:
printf("Enter host to ping: ");
scanf("%s", host);
printf("Pinging %s...\n", host);
system((char []){"ping -c 4 "}); // Need to concatenate string
char cmd1[150];
snprintf(cmdl, sizeof(cmd1l), "ping -c 4 %s", host);
system(cmdl);
break;

case 2:
printf("Showing IP configuration...\n");
system(*ip addr show"); // For modern systems. Use "ifconfig" on older systems.
break;

case 3:
printf("Showing network statistics...\n");
system(*'netstat -tuln");
break;

case 4:
printf("Enter host for traceroute: ");
scanf("'%s", host);
char cmd2[150];
snprintf(cmd2, sizeof(cmd2), "traceroute %s", host);
system(cmd2);
break;

case 9:
printf("Exiting program.\n");
exit(0);

default:
printf("Invalid choice. Try again.\n");

k
¥

return O;

}
Result:
--- Basic Networking Commands ---

1. Ping a host

2. Show IP configuration

3. Show network statistics

4. Traceroute to a host

5. Exit
Enter your choice: 1
Enter host to ping: google.com
Pinging google.com...

PING google.com (142.250.77.14) 56(84) bytes of data.

64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seg=1 ttlI=115 time=13.5 ms
64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seq=2 ttI=115 time=13.4 ms
64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seq=3 ttI=115 time=13.6 ms
64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seq=4 ttlI=115 time=13.3 ms

--- google.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 13.301/13.462/13.643/0.127 ms

Basic Networking Commands
1. Ping a host
2. Show IP configuration
3. Show network statistics
4. Traceroute to a host
5. Exit

Enter your choice: 2

Showing IP configuration...

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...
inet 127.0.0.1/8 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 ...
inet 192.168.0.104/24 brd 192.168.0.255 scope global dynamic eth0

Basic Networking Commands
1. Ping a host
2. Show IP configuration
3. Show network statistics
4. Traceroute to a host
5. Exit

Enter your choice: 3

Showing network statistics...

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 00.0.0.0:22 0.0.0.0:* LISTEN
udp 0 00.0.0.0:68 0.0.0.0:*

Basic Networking Commands
1. Ping a host
2. Show IP configuration
3. Show network statistics
4. Traceroute to a host
5. Exit
Enter your choice: 4
Enter host for traceroute: google.com
traceroute to google.com (142.250.77.14), 30 hops max

1 192.168.0.1 (192.168.0.1) 1.123 ms 0.823 ms 0.733 ms
2 100.67.128.1 (100.67.128.1) 4.552 ms 4.481 ms 4.428 ms
3 ..

30
Basic Networking Commands
1. Ping a host
2. Show IP configuration
3. Show network statistics
4. Traceroute to a host
5. Exit

Enter your choice: 5
Exiting program.

%8
D

@ —— FRAMEWORK ON IXNOVATION ACKIEVAMENTS S
CMR CMR ENGINEERING COLLEGE
ENGINEERING COLLEGE UGC AUTONOMOUS
CEFUORETAINIEST Approved by AICTE-New Delhi | Affiliated to JNTUH | Accredited by NAAC & NBA

Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning)

Machine Learning Lab
I11. B. Tech Il Semester

Dr. A. Amarajyothi
Assoc. Professor

2024-2025

LEAD EXPERIMENTS

1) Recognize the handwritten digits using k-nearest neighbor algorithm.

2) Implement Gassian Naive Bayes using sk learn.

1) Recognize the handwritten digits using k-nearest neighbor algorithm.

Aim: To create a model capable of accurately identifying handwritten digits using K-nearest
neighbors algorithm.

Definition: Handwritten digit recognition is the process of training a machine to identify and

classify handwritten numerical digits (0-9) from images. For this, use K-nearest neighbors
algorithm using sklearn.datasets.

Program:

from sklearn.datasets import load digits

from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score

import matplotlib.pyplot as plt

1. Load the dataset

digits = load digits()

X, y = digits.data, digits.target # 1797 samples, 64 features (8x8
images flattened)

Optional: visualize some digits
plt.gray()
plt.matshow(digits.images[0])
plt.title(f"Digit: {digits.target[0]}")
plt.show ()

2. Split into training and test sets
X train, X test, y train, y test = train test split(X, vy,
test size=0.2, random state=42)

3. Initialize and train KNN model
knn = KNeighborsClassifier (n neighbors=3)
knn.fit (X train, y train)

4. Predict and evaluate
y pred = knn.predict (X test)
print ("Accuracy:", accuracy score(y test, y pred)

Result:
<Figure size 648x488 with & Axes>

Digit: 0
0 1 2 3 4 3 4] 7

Accuracy: 8.9333333333333333

2) Implement Gassian Naive Bayes using sk learn.
Aim: To implement Gaussian Naive Bayes using Scikit-learn.

Definition: Gaussian Naive Bayes is a classification algorithm. It is a variant of the Naive
Bayes algorithm specifically designed for continuous features, assuming that the likelihood of
features given a class follows a Gaussian (normal) distribution. This algorithm is available
within the sklearn.naive_bayes module in Scikit-learn. It assumes that features are
conditionally independent given the class label, and that each feature's distribution within each
class is Gaussian. It is well-suited for datasets with continuous numerical features.

Progranr

from sklearn.datasets import load digits

from sklearn.model selection import train test split

from sklearn.naive bayes import GaussianNB

from sklearn.metrics import accuracy score, classification report,

confusion matrix

import matplotlib.pyplot as plt
import seaborn as sns

Load dataset

digits = load digits()

X, y = digits.data, digits.target # X shape: (1797, 64), y shape:
(1797,)

Split into train/test sets
X train, X test, y train, y test = train test split(X, vy,

test size=0.2, random state=42)

Initialize and train the model
gnb = GaussianNB ()
gnb.fit (X train, y train)

Make predictions
y pred = gnb.predict (X test)

Evaluate
print ("Accuracy:", accuracy score(y test, y pred))

Result:

Accuracy: 0.8472222222222222

A

CMR CMR ENGINEERING COLLEGE
ENGINEERING COLLEGE UGC AUTONOMOUS
e At s Approved by AICTE-New Delhi | Affiliated to JNTUH | Accredited by NAAC & NBA

Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning)

NATURAL LANGUAGE PROCESSING LAB
I11. B. Tech Il Semester

B. Revathi
Asst. Professor

2024-2025

LEAD EXPERIMENTS

1) Create a python program to prepare Multilingual transcription seeking inputs of words.
2) Write a python program to generate parse tree.

1) Create a python program to prepare Multilingual transcription seeking inputs of words.

Aim: The aim of the Multilingual Transcription program is:

To accept one or more words as input from the user and generate their translations (transcriptions) in multiple
selected languages using an automated translation service.

Definition: The Multilingual Transcription Program is a Python application designed to take one or more
words as input from the user and generate their translations in multiple languages. It uses the googletrans library
(a Python interface for Google Translate) to perform real-time, automated translation of words into user-
specified languages.

Program Code:
from googletrans import Translator

def get_language codes():
print("\nEnter the language codes (comma-separated) you want the transcription in.")
print("Examples: en=English, es=Spanish, fr=French, de=German, hi=Hindi, zh-cn=Chinese
Simplified")
codes = input("Enter language codes (e.qg., en,fr,es): ").strip()
return [code.strip() for code in codes.split(’,") if code.strip()]

def main():
print("=== Multilingual Transcription Program ===\n")

Input words
words_input = input("Enter the words (comma-separated): ")
words = [word.strip() for word in words_input.split(',") if word.strip()]

If not words:
print("No words entered. Exiting.")
return

Get language codes

lang_codes = get_language codes()

if not lang_codes:
print("No language codes entered. Exiting.")
return

translator = Translator()

Perform translation
print(*\n=== Transcriptions ===")
for word in words:
print(f"\nOriginal Word: {word}")
for lang in lang_codes:
try:
translated = translator.translate(word, dest=lang)
print(f" [{lang}] {translated.text}")
except Exception as e:
print(f* Error translating to {lang}: {e}")
if _name_ =="_main__ "™
main()
1 Example Usage:
csharp
Copy
Edit
Enter the words (comma-separated): hello, world
Enter language codes (e.g., en,fr,es): fr,es,de,hi

Result:
=== Transcriptions ===

Original Word: hello
[fr] bonjour
[es] hola
[de] hallo

[hi] THd

Original Word: world
[fr] monde
[es] mundo
[de] welt

[hi] g

2). Write a python program to generate parse tree.

Aim: To analyze the grammatical structure of a given English sentence and generate its syntactic parse tree
using natural language processing techniques.

Definition: The Parse Tree Generator is a Python program that takes an English sentence as input and
analyzes its grammatical structure by generating a syntactic parse tree. It uses Natural Language Processing
(NLP) techniques such as tokenization, part-of-speech (POS) tagging, and chunking with defined grammar
rules to identify phrases like noun phrases (NP), verb phrases (VP), and prepositional phrases (PP).

Program Code:

import nltk

from nltk import pos_tag, word_tokenize
from nltk.tree import Tree

from nltk.chunk import RegexpParser

def generate_parse_tree(sentence):
Tokenize and POS tag
tokens = word_tokenize(sentence)
tagged = pos_tag(tokens)

Define a simple grammar for noun and verb phrases
grammar = r""™"

NP: {<DT>?<JJ>*<NN.*>} # Noun phrase

VP: {<VB.*><NP|PP>*} # Verb phrase

PP: {<IN><NP>} # Prepositional phrase

Create a parser with the defined grammar
parser = RegexpParser(grammar)
tree = parser.parse(tagged)

return tree

def main():
print("=== Parse Tree Generator ==="
sentence = input("Enter a sentence: ")
tree = generate_parse_tree(sentence)

print(*\nGenerated Parse Tree:")
print(tree)

Display the tree graphically
tree.pretty print()

if _name_ =="_main__"™
main()

Result:
Input:

CSS
CopyEdit
Enter a sentence: The quick brown fox jumps over the lazy dog

Output:
A printed structure and a graphical tree (in console, via ASCII):

swift
CopyEdit
(S
(NP The/JJ quick/JJ brown/JJ fox/NN)
(VP jumps/VBZ (PP over/IN (NP the/DT lazy/JJ dog/NN))))

	COCOMO Model :
	COCOMO Basic Model Formula
	Example Estimation Using COCOMO
	Applicability in Real-World Scenarios
	Advantages
	Limitations
	Real-World Use

	FP estimation for online examination system
	1. Functional Components of the System
	2. Function Point Count Table
	3. Value Adjustment Factor (VAF)
	4. Adjusted Function Points (AFP)
	5. Effort and Cost Estimation
	Result:

