

SOFTWARE ENGINEERING LAB

II. B. Tech II Semester

N. Swaroopa

Asst. Professor

2024-2025

 LEAD EXPERIMENTS

1.To Estimate the effort, development time, and cost of a software project using

the COCOMO model and analyze its applicability in real –world scenarios ?

2. Estimation of effort using FP estimation for online examination system

1.To Estimate the effort, development time, and cost of a software project using

the COCOMO model and analyze its applicability in real –world scenarios ?

COCOMO Model :

COCOMO (Constructive Cost Model) is an empirical software cost estimation model

developed by Barry Boehm in the 1980s. It helps project managers estimate the effort

(person-months), development time, and cost based on the size of the software

measured in KLOC (thousands of lines of code).

COCOMO Basic Model Formula

The basic COCOMO model is defined as:

 Effort (E) = a × (KLOC)^b

 Development Time (D) = c × (Effort)^d

Where:

 a, b, c, d are constants depending on the project type:

o Organic: Small teams with good experience and stable requirements

o Semi-Detached: Intermediate

o Embedded: Complex, tight constraints

Project Type a b c d

Organic 2.4 1.05 2.5 0.38

Semi-Detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Example Estimation Using COCOMO

Assume a project of 50 KLOC, categorized as Semi-Detached.

Step 1: Effort Estimation

 Effort = 3.0 × (50)^1.12 ≈ 3.0 × 86.4 = 259.2 person-months

Step 2: Development Time Estimation

 Time = 2.5 × (259.2)^0.35 ≈ 2.5 × 8.9 = 22.3 months

Step 3: Cost Estimation

If the cost per person-month = ₹100,000

Total Cost = 259.2 × ₹100,000 = ₹2.59 Crores

Applicability in Real-World Scenarios

Advantages

 Simple and easy to use for early project estimates.

 Useful in planning budgets, staffing, and schedules.

 Gives a quantitative basis for software effort estimation.

Limitations

 Depends heavily on accurate size estimation (KLOC), which is difficult

early on.

 Not suitable for modern agile or iterative models where requirements

evolve.

 May not handle component reuse, GUI-based systems, or AI-based systems

well.

Real-World Use

 Used in defense, aerospace, and legacy enterprise systems where traditional

waterfall models are still relevant.

 Helps in benchmarking historical project data.

 Often integrated in estimation tools in modified forms (e.g., COCOMO II for

modern development).

2. To Estimation of effort using FP estimation for online examination system?

FP estimation for online examination system

1. Functional Components of the System
The Online Examination System includes features such as:
- Student and Admin login
- Registering students and exams
- Question paper management
- Conducting exams
- Viewing results and reports

These are mapped to the five Function Point (FP) categories:
EI - External Inputs
EO - External Outputs
EQ - External Inquiries
ILF - Internal Logical Files
EIF - External Interface Files

2. Function Point Count Table
Function Type Function

Description
Count Complexity Weight Total FP

EI Login,
Register,
Create Exam,
Submit
Answers

6 Average 4 24

EO View Results,
Reports

3 Average 5 15

EQ Fetch Student
Info, Exam
List, Exam
Details

3 Simple 3 9

ILF Students DB,
Questions DB,
Results DB

3 Average 10 30

EIF Authentication
System,
University DB

2 Simple 5 10

Unadjusted Function Points (UFP) = 24 + 15 + 9 + 30 + 10 = 88

3. Value Adjustment Factor (VAF)
Based on 14 General System Characteristics (GSCs), assume a medium influence score:
Total Degree of Influence (DI) = 35
VAF = 0.65 + (0.01 × DI) = 0.65 + 0.35 = 1.00

4. Adjusted Function Points (AFP)
AFP = UFP × VAF = 88 × 1.00 = 88

5. Effort and Cost Estimation
Productivity Rate = 10 hours per FP
Total Effort = 88 × 10 = 880 hours
Person-Months (assuming 160 hours/month) = 880 ÷ 160 = 5.5 PM
Cost per Person-Month = ₹1,00,000
Estimated Project Cost = 5.5 × ₹1,00,000 = ₹5.5 Lakhs

Database Management Systems Lab

II. B. Tech II Semester

M. Soujanya

Asst. Professor

2024-2025

LEAD EXPERIMENTS

1) Create views to insert, delete and update tuples.

2) Create trigger. the trigger as to execute on inserting a table and create a backup data.

 1)Create views to insert, delete and update tuples

Aim: To implement operations on relations using PL/SQL Views.

Definition: A view is, in essence, a virtual table. It does not physically exist. Rather, it is

created by a query joining one or more tables.

Create view employee dept-view as select t1.emp_name,t2.dept_name

From employee as t1 left join department as t2

Insert into employee(‘fname’,’lname’,’ssn’,dno)

values(‘robert’,’hitler’,9673553574,2);

Delete from employee

where fname=‘robert’;

Update employee

SET fname=’brown’,lname=’rob’,ssn=9680377384,Dno=2;

Result: Views in PL/SQL language are performed.

2). Create trigger. the trigger as to execute on inserting a table and create a backup data

Aim: To implement operations on relations using PL/SQL trigger

Definition: a trigger is a SQL procedure that initiates an action (i.e., fires an action) when an

event (INSERT, DELETE or UPDATE) occurs. Sincetriggers are event-driven specialized

procedures, they are stored in and managed by the DBMS.

CREATE TRIGGER PRINT_SALARY_CHANG IS

BEFORE DELETE OR INSERT OR UPDATE ON emp

FOR EACH ROW

WHEN (new.empno>0)

DECLARE

Sal-diff number

BEGIN

Sal-diff=new Sal-old sal;

Dbms_output.put(“old salary://:old sal”);

Dbms_output.put(“new salary://:new sal”);

END;

/

Result: A triggers in PL/SQL language are performed.

Computer Networks Lab

III. B. Tech II Semester

D. Siva Raja Kumar

Asst. Professor

2024-2025

LEAD EXPERIMENTS

1) Create views to insert, delete and update tuples.

2) Create trigger. the trigger as to execute on inserting a table and create a backup data.

1) Implement the Stop-and-Wait protocol for data transmission.

Aim: To implement the Stop-and-Wait protocol for reliable data transmission over an unreliable

communication channel.

Program:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> // for sleep()

// Simulated sender function

void sender(int frames[], int n) {

 int i = 0, ack;

 while (i < n) {

 printf("Sender: Sending frame %d\n", frames[i]);

 // Simulate frame transmission delay

 sleep(1);

 // Ask if the frame was received

 printf("Receiver: Was frame %d received? (1 for Yes, 0 for No): ", frames[i]);

 scanf("%d", &ack);

 if (ack == 1) {

 printf("Sender: Acknowledgment received for frame %d\n\n", frames[i]);

 i++; // Go to next frame

 } else {

 printf("Sender: No ACK received for frame %d. Resending...\n\n", frames[i]);

 }

 // Simulate time delay before next transmission

 sleep(1);

 }

 printf("All frames sent successfully.\n");

}

int main() {

 int n;

 printf("Enter the number of frames to send: ");

 scanf("%d", &n);

 int frames[n];

 printf("Enter %d frame data (integers):\n", n);

 for (int i = 0; i < n; i++) {

 printf("Frame %d: ", i);

 scanf("%d", &frames[i]);

 }

 printf("\n--- Starting Stop-and-Wait Protocol ---\n\n");

 sender(frames, n);

 return 0;

}

Result:

Enter the number of frames to send: 3

Enter 3 frame data (integers):

Frame 0: 10

Frame 1: 20

Frame 2: 30

--- Starting Stop-and-Wait Protocol ---

Sender: Sending frame 10

Receiver: Was frame 10 received? (1 for Yes, 0 for No): 1

Sender: Acknowledgment received for frame 10

Sender: Sending frame 20

Receiver: Was frame 20 received? (1 for Yes, 0 for No): 0

Sender: No ACK received for frame 20. Resending...

Sender: Sending frame 20

Receiver: Was frame 20 received? (1 for Yes, 0 for No): 1

Sender: Acknowledgment received for frame 20

2) To study about the working of basic networking commands

Aim: To study the working of basic networking commands (ping, ip, netstat, and traceroute) by

executing them from a C program.

Program:

#include <stdio.h>

#include <stdlib.h>

void show_menu() {

 printf("\n--- Basic Networking Commands ---\n");

 printf("1. Ping a host\n");

 printf("2. Show IP configuration\n");

 printf("3. Show network statistics\n");

 printf("4. Traceroute to a host\n");

 printf("5. Exit\n");

 printf("Enter your choice: ");

}

int main() {

 int choice;

 char host[100];

 while (1) {

 show_menu();

 scanf("%d", &choice);

 switch (choice) {

 case 1:

 printf("Enter host to ping: ");

 scanf("%s", host);

 printf("Pinging %s...\n", host);

 system((char []){"ping -c 4 "}); // Need to concatenate string

 char cmd1[150];

 snprintf(cmd1, sizeof(cmd1), "ping -c 4 %s", host);

 system(cmd1);

 break;

case 2:

 printf("Showing IP configuration...\n");

 system("ip addr show"); // For modern systems. Use "ifconfig" on older systems.

 break;

 case 3:

 printf("Showing network statistics...\n");

 system("netstat -tuln");

 break;

 case 4:

 printf("Enter host for traceroute: ");

 scanf("%s", host);

 char cmd2[150];

 snprintf(cmd2, sizeof(cmd2), "traceroute %s", host);

 system(cmd2);

 break;

 case 5:

 printf("Exiting program.\n");

 exit(0);

 default:

 printf("Invalid choice. Try again.\n");

 }

 }

 return 0;

}

Result:

--- Basic Networking Commands ---

1. Ping a host

2. Show IP configuration

3. Show network statistics

4. Traceroute to a host

5. Exit

Enter your choice: 1

Enter host to ping: google.com

Pinging google.com...

PING google.com (142.250.77.14) 56(84) bytes of data.

64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seq=1 ttl=115 time=13.5 ms

64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seq=2 ttl=115 time=13.4 ms

64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seq=3 ttl=115 time=13.6 ms

64 bytes from del03s30-in-f14.1e100.net (142.250.77.14): icmp_seq=4 ttl=115 time=13.3 ms

--- google.com ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3005ms

rtt min/avg/max/mdev = 13.301/13.462/13.643/0.127 ms

Basic Networking Commands

1. Ping a host

2. Show IP configuration

3. Show network statistics

4. Traceroute to a host

5. Exit

Enter your choice: 2

Showing IP configuration...

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...

 inet 127.0.0.1/8 scope host lo

 ...

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 ...

 inet 192.168.0.104/24 brd 192.168.0.255 scope global dynamic eth0

 ...

Basic Networking Commands

1. Ping a host

2. Show IP configuration

3. Show network statistics

4. Traceroute to a host

5. Exit

Enter your choice: 3

Showing network statistics...

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

udp 0 0 0.0.0.0:68 0.0.0.0:*

Basic Networking Commands

1. Ping a host

2. Show IP configuration

3. Show network statistics

4. Traceroute to a host

5. Exit

Enter your choice: 4

Enter host for traceroute: google.com

traceroute to google.com (142.250.77.14), 30 hops max

 1 192.168.0.1 (192.168.0.1) 1.123 ms 0.823 ms 0.733 ms

 2 100.67.128.1 (100.67.128.1) 4.552 ms 4.481 ms 4.428 ms

 3 ...

 ...

30

Basic Networking Commands

1. Ping a host

2. Show IP configuration

3. Show network statistics

4. Traceroute to a host

5. Exit

Enter your choice: 5

Exiting program.

Machine Learning Lab

III. B. Tech II Semester

Dr. A. Amarajyothi

Assoc. Professor

2024-2025

LEAD EXPERIMENTS

1) Recognize the handwritten digits using k-nearest neighbor algorithm.

 2) Implement Gassian Naïve Bayes using sk learn.

1) Recognize the handwritten digits using k-nearest neighbor algorithm.

Aim: To create a model capable of accurately identifying handwritten digits using K-nearest

neighbors algorithm.

Definition: Handwritten digit recognition is the process of training a machine to identify and

classify handwritten numerical digits (0-9) from images. For this, use K-nearest neighbors

algorithm using sklearn.datasets.

Program:

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score

import matplotlib.pyplot as plt

1. Load the dataset

digits = load_digits()

X, y = digits.data, digits.target # 1797 samples, 64 features (8x8

images flattened)

Optional: visualize some digits

plt.gray()

plt.matshow(digits.images[0])

plt.title(f"Digit: {digits.target[0]}")

plt.show()

2. Split into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

3. Initialize and train KNN model

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train, y_train)

4. Predict and evaluate

y_pred = knn.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred)

Result:

2) Implement Gassian Naïve Bayes using sk learn.

Aim: To implement Gaussian Naive Bayes using Scikit-learn.

Definition: Gaussian Naive Bayes is a classification algorithm. It is a variant of the Naive

Bayes algorithm specifically designed for continuous features, assuming that the likelihood of

features given a class follows a Gaussian (normal) distribution. This algorithm is available

within the sklearn.naive_bayes module in Scikit-learn. It assumes that features are

conditionally independent given the class label, and that each feature's distribution within each

class is Gaussian. It is well-suited for datasets with continuous numerical features.

Program:

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

Load dataset

digits = load_digits()

X, y = digits.data, digits.target # X shape: (1797, 64), y shape:

(1797,)

Split into train/test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Initialize and train the model

gnb = GaussianNB()

gnb.fit(X_train, y_train)

Make predictions

y_pred = gnb.predict(X_test)

Evaluate

print("Accuracy:", accuracy_score(y_test, y_pred))

Result:

Accuracy: 0.8472222222222222

NATURAL LANGUAGE PROCESSING LAB

III. B. Tech II Semester

B. Revathi

Asst. Professor

2024-2025

LEAD EXPERIMENTS

1) Create a python program to prepare Multilingual transcription seeking inputs of words.

2) Write a python program to generate parse tree.

 1) Create a python program to prepare Multilingual transcription seeking inputs of words.

Aim: The aim of the Multilingual Transcription program is:

To accept one or more words as input from the user and generate their translations (transcriptions) in multiple

selected languages using an automated translation service.

Definition: The Multilingual Transcription Program is a Python application designed to take one or more

words as input from the user and generate their translations in multiple languages. It uses the googletrans library

(a Python interface for Google Translate) to perform real-time, automated translation of words into user-

specified languages.

Program Code:

from googletrans import Translator

def get_language_codes():

 print("\nEnter the language codes (comma-separated) you want the transcription in.")

 print("Examples: en=English, es=Spanish, fr=French, de=German, hi=Hindi, zh-cn=Chinese

Simplified")

 codes = input("Enter language codes (e.g., en,fr,es): ").strip()

 return [code.strip() for code in codes.split(',') if code.strip()]

def main():

 print("=== Multilingual Transcription Program ===\n")

 # Input words

 words_input = input("Enter the words (comma-separated): ")

 words = [word.strip() for word in words_input.split(',') if word.strip()]

 if not words:

 print("No words entered. Exiting.")

 return

 # Get language codes

 lang_codes = get_language_codes()

 if not lang_codes:

 print("No language codes entered. Exiting.")

 return

 translator = Translator()

 # Perform translation

 print("\n=== Transcriptions ===")

 for word in words:

 print(f"\nOriginal Word: {word}")

 for lang in lang_codes:

 try:

 translated = translator.translate(word, dest=lang)

 print(f" [{lang}] {translated.text}")

 except Exception as e:

 print(f" Error translating to {lang}: {e}")

if __name__ == "__main__":

 main()

🧪 Example Usage:

csharp

Copy

Edit

Enter the words (comma-separated): hello, world

Enter language codes (e.g., en,fr,es): fr,es,de,hi

Result:

=== Transcriptions ===

Original Word: hello

 [fr] bonjour

 [es] hola

 [de] hallo

 [hi] नमसे्त

Original Word: world

 [fr] monde

 [es] mundo

 [de] welt

 [hi] दुननया

2). Write a python program to generate parse tree.

Aim: To analyze the grammatical structure of a given English sentence and generate its syntactic parse tree

using natural language processing techniques.

Definition: The Parse Tree Generator is a Python program that takes an English sentence as input and

analyzes its grammatical structure by generating a syntactic parse tree. It uses Natural Language Processing

(NLP) techniques such as tokenization, part-of-speech (POS) tagging, and chunking with defined grammar

rules to identify phrases like noun phrases (NP), verb phrases (VP), and prepositional phrases (PP).

Program Code:

import nltk

from nltk import pos_tag, word_tokenize

from nltk.tree import Tree

from nltk.chunk import RegexpParser

def generate_parse_tree(sentence):

 # Tokenize and POS tag

 tokens = word_tokenize(sentence)

 tagged = pos_tag(tokens)

 # Define a simple grammar for noun and verb phrases

 grammar = r"""

 NP: {<DT>?<JJ>*<NN.*>} # Noun phrase

 VP: {<VB.*><NP|PP>*} # Verb phrase

 PP: {<IN><NP>} # Prepositional phrase

 """

 # Create a parser with the defined grammar

 parser = RegexpParser(grammar)

 tree = parser.parse(tagged)

 return tree

def main():

 print("=== Parse Tree Generator ===")

 sentence = input("Enter a sentence: ")

 tree = generate_parse_tree(sentence)

 print("\nGenerated Parse Tree:")

 print(tree)

 # Display the tree graphically

 tree.pretty_print()

if __name__ == "__main__":

 main()

Result:

Input:

css

CopyEdit

Enter a sentence: The quick brown fox jumps over the lazy dog

Output:

A printed structure and a graphical tree (in console, via ASCII):

swift

CopyEdit

 (S

 (NP The/JJ quick/JJ brown/JJ fox/NN)

 (VP jumps/VBZ (PP over/IN (NP the/DT lazy/JJ dog/NN))))

	COCOMO Model :
	COCOMO Basic Model Formula
	Example Estimation Using COCOMO
	Applicability in Real-World Scenarios
	Advantages
	Limitations
	Real-World Use

	FP estimation for online examination system
	1. Functional Components of the System
	2. Function Point Count Table
	3. Value Adjustment Factor (VAF)
	4. Adjusted Function Points (AFP)
	5. Effort and Cost Estimation
	Result:

