=)
5., ".'\,4» 2

=0z ; .)
CMRCMR Engineering College S N

(&

UGC AUTONOMOUS
KANDLAKOYA (VI), MEDCHAL ROAD, HYDERABAD-501401

Department of Electronics and Communication Engineering

ARM Cortex-M3 Control Boards

I's a great addition to your lab facilities! ARM Cortex-M3 boards (like the STM32F103 or
LPC1768) are industry-standard tools for teaching embedded systems because they bridge the
gap between simple 8-bit microcontrollers and high-performance 64-bit processors.

Below is a draft you can use for your college website. It is structured to be professional,
informative for students, and attractive for accreditation (like ABET or NBA) purposes.

Facility Spotlight: Cortex-M3 Embedded Systems
Experments

Overview

Our laboratory is now equipped with ARM Cortex-M3 Control Boards, providing students with
a high-performance 32-bit prototyping platform. These boards are designed to handle the
complex, real-time processing demands of modern embedded applications, ranging from
Industrial Automation and Robotics to 10T (Internet of Things) devices.:

Core Technical Specifications

The Cortex-M3 processor is the industry leader for deterministic, low-power applications. Key
features available on our lab units include:

e Architecture: 32-bit RISC ARMv7-M with a 3-stage pipeline (Harvard Architecture).-

e Performance: Up to 1.25 DMIPS/MHz, allowing for complex mathematical operations and
fast data processing.:

e Interrupt Handling: Features the Nested Vectored Interrupt Controller (NVIC), which
reduces interrupt latency and provides high responsiveness for real-time tasks.:

e Memory: Integrated Flash memory and high-speed SRAM, supported by an optional
Memory Protection Unit (MPU) for robust software execution.s

e Peripherals: On-board support for USB, CAN, UART, I12C, SPI, and High-speed ADCs for
sensor interfacing.s

Educational Objectives

The introduction of these boards allows students to move beyond basic electronics and master
professional-grade engineering concepts:

1. Real-Time OS (RTOS) Implementation: Learning to manage multitasking and priority-
based scheduling.

2. Advanced Interfacing: Connecting high-resolution displays, industrial sensors, and
communication modules (Ethernet/Bluetooth).

3. Power Optimization: Exploring hardware-controlled sleep modes and low-power system

design.
4. Hardware-Software Co-Design: Utilizing professional IDEs like Keil MDK,
STM32CubelDE, or IAR Embedded Workbench.

Applications in Student Projects

e Robotics: Precision motor control using dedicated PWM channels.
e Smart Systems: Developing Smart Home nodes or wearable health monitors.:

e Industrial loT: Monitoring sensor data and transmitting it via wired or wireless gateways.e

Note for Students: Technical manuals, sample codes, and pin-out diagrams for
the specific board variants (e.g., STM32 / LPC series) are available google drve
Folder.

Quick-Start Guide: ARM Cortex-M3 Control Board

Welcome to the Embedded Systems Lab! This guide will walk you through setting up your
workspace and running your first "Blinky" program on the Cortex-M3 platform.

Step 1. The Development Environment

We primarily use Keil MDK-ARM or STM32CubelDE for development.

1. Open the IDE: Launch Keil μVision from the desktop.

2. Install Device Packs: Ensure the specific device family (e.g., STM32F1xx or LPC17xx) is
installed via the Pack Installer.

3. Create a Project:
o Go to Project -> New uVision Project.
o Select your specific chip model from the device database.

o When prompted to "Copy Startup Code," select Yes. This file handles the initial boot
sequence.

Step 2: Hardware Setup

1. Connect the Debugger: Plug the ST-Link or J-Link debugger into the board’s
JTAG/SWD header.

2. Power Up: Connect the board to your PC via USB. Ensure the "Power" LED on the board
is lit.

3. Driver Check: Open Device Manager on your PC to ensure the debugger is recognized
under "Universal Serial Bus devices."

Step 3: Writing Your First Program (Blinky)

Create a new file main.c and add the following logic (syntax may vary slightly by board
manufacturer):

#include "stm32f10x.h" // Replace with your board's specific header

void Delay(uint32_t count) {
for(uint32_t i = 0; i < count; i++);

}

int main(void) {
/' 1. Enable Clock for the GPIO Port
RCC->APB2ENR |= (1 << 4); // Example: Enable Port C

/I 2. Configure Pin as Output
GPIOC->CRH &= ~(0xF << 20); // Clear bits
GPIOC->CRH |= (0x3 << 20); // Set as Output (50MHz)

while(1) {
GPIOC->0ODR "= (1 << 13); // Toggle LED on Pin 13
Delay(1000000);

}

}

Step 4. Compiling and Flashing

1. Build: Click the Build icon (or press F7). Look for "0 Error(s), 0 Warning(s)" in the output
window.
2. Target Settings: * Go to Options for Target -> Debug tab.
o Select your debugger (e.g., ST-Link Debugger) from the drop-down menu.
o Under Settings -> Flash Download, check the box Reset and Run.
3. Flash: Click the Download button (or press F8). Your LED should start blinking!

Common Troubleshooting

e "Target Not Found": Check your USB cable and ensure the debugger is firmly connected
to the board.

e Build Errors: Ensure you have included the correct header file for your specific Cortex-M3
variant.

e LED Not Blinking: Check the board schematic to verify which GPIO pin the physical LED
is actually connected to.

Cortex-M3 Lab Experiment Series

Experiment 1: Digital 1/0 and External Interrupts

e Objective: Understand GPIO (General Purpose Input/Output) configuration and the Nested
Vectored Interrupt Controller (NVIC).

e Task: Interface a push-button to an external interrupt (EXTI) line. When pressed, the
interrupt should toggle an LED.

e Learning Outcome: Students learn the difference between "polling” a button and using
hardware interrupts for efficiency.

Experiment 2: High-Resolution Timing with SysTick

e Objective: Master the system timer (SysTick) dedicated to the Cortex-M3 core.

e Task: Create a precise 1-millisecond delay timer using the SysTick register instead of
"dummy" for-loops.

e Learning Outcome: Understanding the internal system clock and how to create time-
deterministic software.

Experiment 3. Analog-to-Digital Conversion (ADC)

o Objective: Interface the physical world with 32-bit digital processing.

e Task: Connect a potentiometer or temperature sensor to an ADC channel. Read the
voltage and output the value to a computer via UART (Serial Communication).

e Learning Outcome: Learning about sampling rates, resolution (12-bit), and data
serialization.

Experiment 4. PWM Generation for Motor Control

o Objective: Use advanced timers to generate Pulse Width Modulation (PWM) signals.

e Task: Control the brightness of an LED or the speed of a small DC motor by varying the
duty cycle of a timer output.

e Learning Outcome: Understanding how digital processors control analog power levels.

Experiment 5: Multi-Tasking with a Real-Time OS (RTOS)

e Objective: Transition from "Super-loop" programming to professional multitasking.

e Task: Use FreeRTOS to run two concurrent tasks: one task blinking an LED and another
task reading sensor data, managed by a scheduler.

e Learning Outcome: Learning task priorities, context switching, and resource management
in complex systems.

Resource Kit for Labs

To support these experiments, the following documentation is available in the lab:

e The Definitive Guide to ARM Cortex-M3 (Joseph Yiu) — The "Bible" for this architecture.
o Datasheets & Reference Manuals: Specific to the chip manufacturer (ST, NXP, or TI).
¢ Pin-out Maps: Laminated sheets for each workbench to prevent incorrect wiring.

	Facility Spotlight: Cortex-M3 Embedded Systems Experments
	Overview
	Core Technical Specifications
	Educational Objectives
	Applications in Student Projects

	Quick-Start Guide: ARM Cortex-M3 Control Board
	Step 1: The Development Environment
	Step 2: Hardware Setup
	Step 3: Writing Your First Program (Blinky)
	Step 4: Compiling and Flashing
	Common Troubleshooting

	Cortex-M3 Lab Experiment Series
	Experiment 1: Digital I/O and External Interrupts
	Experiment 2: High-Resolution Timing with SysTick
	Experiment 3: Analog-to-Digital Conversion (ADC)
	Experiment 4: PWM Generation for Motor Control
	Experiment 5: Multi-Tasking with a Real-Time OS (RTOS)
	Resource Kit for Labs

