
 

 

ARM Cortex-M3 Control Boards 

It’s a great addition to your lab facilities! ARM Cortex-M3 boards (like the STM32F103 or 
LPC1768) are industry-standard tools for teaching embedded systems because they bridge the 

gap between simple 8-bit microcontrollers and high-performance 64-bit processors. 

Below is a draft you can use for your college website. It is structured to be professional, 
informative for students, and attractive for accreditation (like ABET or NBA) purposes. 

Facility Spotlight: Cortex-M3 Embedded Systems 
Experments 

Overview 

Our laboratory is now equipped with ARM Cortex-M3 Control Boards, providing students with 

a high-performance 32-bit prototyping platform. These boards are designed to handle the 
complex, real-time processing demands of modern embedded applications, ranging from 
Industrial Automation and Robotics to IoT (Internet of Things) devices.1 

 

Core Technical Specifications 

The Cortex-M3 processor is the industry leader for deterministic, low-power applications. Key 
features available on our lab units include: 

 Architecture: 32-bit RISC ARMv7-M with a 3-stage pipeline (Harvard Architecture).2 

 
 

 Performance: Up to 1.25 DMIPS/MHz, allowing for complex mathematical operations and 

fast data processing.3 
 
 

 Interrupt Handling: Features the Nested Vectored Interrupt Controller (NVIC), which 

reduces interrupt latency and provides high responsiveness for real-time tasks.4 
 
 

 Memory: Integrated Flash memory and high-speed SRAM, supported by an optional 
Memory Protection Unit (MPU) for robust software execution.5 



 
 

 Peripherals: On-board support for USB, CAN, UART, I2C, SPI, and High-speed ADCs for 

sensor interfacing.6 
 
 

 

 

 

Educational Objectives 

The introduction of these boards allows students to move beyond basic electronics and master 
professional-grade engineering concepts: 

1. Real-Time OS (RTOS) Implementation: Learning to manage multitasking and priority-

based scheduling. 
2. Advanced Interfacing: Connecting high-resolution displays, industrial sensors, and 

communication modules (Ethernet/Bluetooth). 
3. Power Optimization: Exploring hardware-controlled sleep modes and low-power system 

design. 
4. Hardware-Software Co-Design: Utilizing professional IDEs like Keil MDK, 

STM32CubeIDE, or IAR Embedded Workbench. 

Applications in Student Projects 

 Robotics: Precision motor control using dedicated PWM channels.7 

 
 

 Smart Systems: Developing Smart Home nodes or wearable health monitors.8 

 
 

 Industrial IoT: Monitoring sensor data and transmitting it via wired or wireless gateways.9 

 
 

Note for Students: Technical manuals, sample codes, and pin-out diagrams for 
the specific board variants (e.g., STM32 / LPC series) are available google drve 
Folder. 

 

 

 

 

 

 



 

 

 

 

 

 

Quick-Start Guide: ARM Cortex-M3 Control Board 

Welcome to the Embedded Systems Lab! This guide will walk you through setting up your 
workspace and running your first "Blinky" program on the Cortex-M3 platform. 

Step 1: The Development Environment 
We primarily use Keil MDK-ARM or STM32CubeIDE for development. 

1. Open the IDE: Launch Keil $\mu$Vision from the desktop. 
2. Install Device Packs: Ensure the specific device family (e.g., STM32F1xx or LPC17xx) is 

installed via the Pack Installer. 
3. Create a Project: 

o Go to Project -> New uVision Project. 
o Select your specific chip model from the device database. 
o When prompted to "Copy Startup Code," select Yes. This file handles the initial boot 

sequence. 

Step 2: Hardware Setup 

1. Connect the Debugger: Plug the ST-Link or J-Link debugger into the board’s 

JTAG/SWD header. 
2. Power Up: Connect the board to your PC via USB. Ensure the "Power" LED on the board 

is lit. 
3. Driver Check: Open Device Manager on your PC to ensure the debugger is recognized 

under "Universal Serial Bus devices." 

Step 3: Writing Your First Program (Blinky) 
Create a new file main.c and add the following logic (syntax may vary slightly by board 
manufacturer): 

 

C 

 

#include "stm32f10x.h" // Replace with your board's specific header 
 



void Delay(uint32_t count) { 
    for(uint32_t i = 0; i < count; i++); 
} 
 
int main(void) { 
    // 1. Enable Clock for the GPIO Port 
    RCC->APB2ENR |= (1 << 4); // Example: Enable Port C 
     
    // 2. Configure Pin as Output 
    GPIOC->CRH &= ~(0xF << 20); // Clear bits 
    GPIOC->CRH |= (0x3 << 20);  // Set as Output (50MHz) 
     
    while(1) { 
        GPIOC->ODR ^= (1 << 13); // Toggle LED on Pin 13 
        Delay(1000000); 
    } 
} 
 

 

Step 4: Compiling and Flashing 

1. Build: Click the Build icon (or press F7). Look for "0 Error(s), 0 Warning(s)" in the output 

window. 
2. Target Settings: * Go to Options for Target -> Debug tab. 

o Select your debugger (e.g., ST-Link Debugger) from the drop-down menu. 
o Under Settings -> Flash Download, check the box Reset and Run. 

3. Flash: Click the Download button (or press F8). Your LED should start blinking! 

 

Common Troubleshooting 

 "Target Not Found": Check your USB cable and ensure the debugger is firmly connected 

to the board. 
 Build Errors: Ensure you have included the correct header file for your specific Cortex-M3 

variant. 
 LED Not Blinking: Check the board schematic to verify which GPIO pin the physical LED 

is actually connected to. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Cortex-M3 Lab Experiment Series 

Experiment 1: Digital I/O and External Interrupts 

 Objective: Understand GPIO (General Purpose Input/Output) configuration and the Nested 

Vectored Interrupt Controller (NVIC). 
 Task: Interface a push-button to an external interrupt (EXTI) line. When pressed, the 

interrupt should toggle an LED. 
 Learning Outcome: Students learn the difference between "polling" a button and using 

hardware interrupts for efficiency. 

Experiment 2: High-Resolution Timing with SysTick 

 Objective: Master the system timer (SysTick) dedicated to the Cortex-M3 core. 
 Task: Create a precise 1-millisecond delay timer using the SysTick register instead of 

"dummy" for-loops. 
 Learning Outcome: Understanding the internal system clock and how to create time-

deterministic software. 

Experiment 3: Analog-to-Digital Conversion (ADC) 

 Objective: Interface the physical world with 32-bit digital processing. 
 Task: Connect a potentiometer or temperature sensor to an ADC channel. Read the 

voltage and output the value to a computer via UART (Serial Communication). 
 Learning Outcome: Learning about sampling rates, resolution (12-bit), and data 

serialization. 

Experiment 4: PWM Generation for Motor Control 

 Objective: Use advanced timers to generate Pulse Width Modulation (PWM) signals. 
 Task: Control the brightness of an LED or the speed of a small DC motor by varying the 

duty cycle of a timer output. 
 Learning Outcome: Understanding how digital processors control analog power levels. 

Experiment 5: Multi-Tasking with a Real-Time OS (RTOS) 

 Objective: Transition from "Super-loop" programming to professional multitasking. 



 Task: Use FreeRTOS to run two concurrent tasks: one task blinking an LED and another 
task reading sensor data, managed by a scheduler. 

 Learning Outcome: Learning task priorities, context switching, and resource management 

in complex systems. 

 

Resource Kit for Labs 

To support these experiments, the following documentation is available in the lab: 

 The Definitive Guide to ARM Cortex-M3 (Joseph Yiu) – The "Bible" for this architecture. 
 Datasheets & Reference Manuals: Specific to the chip manufacturer (ST, NXP, or TI). 
 Pin-out Maps: Laminated sheets for each workbench to prevent incorrect wiring. 

. 

 


	Facility Spotlight: Cortex-M3 Embedded Systems Experments
	Overview
	Core Technical Specifications
	Educational Objectives
	Applications in Student Projects

	Quick-Start Guide: ARM Cortex-M3 Control Board
	Step 1: The Development Environment
	Step 2: Hardware Setup
	Step 3: Writing Your First Program (Blinky)
	Step 4: Compiling and Flashing
	Common Troubleshooting

	Cortex-M3 Lab Experiment Series
	Experiment 1: Digital I/O and External Interrupts
	Experiment 2: High-Resolution Timing with SysTick
	Experiment 3: Analog-to-Digital Conversion (ADC)
	Experiment 4: PWM Generation for Motor Control
	Experiment 5: Multi-Tasking with a Real-Time OS (RTOS)
	Resource Kit for Labs



